K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

Ta có a2 + b= (a + b)- 2ab = 1 - 2ab

Ta có 4ab <= (a + b)= 1 <=> 1 - 2ab >= 1 - \(\frac{1}{2}\)= \(\frac{1}{2}\)

Vậy a+ b>= \(\frac{1}{2}\)

26 tháng 9 2018

Bạn cần biết  \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  (nếu bạn chưa biết thì xét hiệu) 

Ta có: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\)

\(\ge\frac{4}{1+a^2+1+b^2}\)

\(=\frac{4}{a^2+b^2+2}\)

\(\ge\frac{4}{2ab+2}=\frac{2}{ab+1}\)

Dấu "=" xảy ra khi \(a=b\)

10 tháng 11 2016

Bài 1:

a)Áp dụng Bđt Bunhiacopski ta có:

\(3a^2+4b^2\ge\frac{\left(3a+4b\right)^2}{7}=7\)

b)Áp dụng Bđt Bunhiacopski ta có:

\(\left(3a^2+5b^2\right)\left[\left(\frac{2}{\sqrt{3}}\right)^2+\left(-\frac{3}{\sqrt{5}}\right)^2\right]\ge\left(2a-3b\right)^2=49\)

\(\Rightarrow3a^2+5b^2\ge\frac{735}{47}\)

c)Áp dụng Bđt Bunhiacopski ta có:

\(\left(7a^2+11b^2\right)\left[\left(\frac{3}{\sqrt{7}}\right)^2+\left(\frac{5}{\sqrt{11}}\right)^2\right]\ge\left(\frac{3}{\sqrt{7}}\cdot\sqrt{7}a-\frac{5}{\sqrt{11}}\cdot\sqrt{11}b\right)^2=64\)

\(\Rightarrow\frac{274}{77}\left(7a^2+11b^2\right)\ge64\)

\(\Rightarrow7a^2+11b^2\ge\frac{2464}{137}\)

d)Áp dụng Bđt Bunhiacopski ta có:

\(\left(1^2+2^2\right)\left(a^2+b^2\right)\ge\left(a+2b\right)^2=4\)

\(\Rightarrow a^2+b^2\ge\frac{4}{5}\)

 

 

 

 

 

 

 

 

10 tháng 11 2016

lần sau đăng ít thôi nhé

23 tháng 3 2017

xét hiệu \(\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\)

quy đồng làm nốt nha                                

31 tháng 5 2015

\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}>=\frac{2}{\left(1+ab\right)}\)

\(\Leftrightarrow\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}-\frac{2}{\left(1+ab\right)}>=0\)

\(\Leftrightarrow\left[\frac{1}{\left(1+a^2\right)}-\frac{1}{\left(1+ab\right)}\right]+\left[\frac{1}{\left(1+b^2\right)}-\frac{1}{\left(1+ab\right)}\right]>=0\)

\(\Leftrightarrow\left[\frac{a\left(b-c\right)}{\left(1+a^2\right)\left(1+ab\right)}\right]+\left[\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\right]>=0\)

\(\frac{\left[a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)\left(a+ab^2-b+ba^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)\left[\left(a-b\right)+ab\left(b-a\right)\right]\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)^2\left(ab-1\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\left(1\right)\)

Mẫu số luôn lớn hơn 1 

\(\left(b-a\right)^2>=0\)  voi moi a,b

Vì a,b >=1 nên ( ab-1) > = 0

​Nên (1)  dụng

 

31 tháng 5 2015

Tu "dung"doi thanh dung

19 tháng 5 2019

Ta có: \(a\ge b\Rightarrow1+b^2\le1+a^2\)

\(\Rightarrow\frac{1}{1+b^2}\ge\frac{1}{1+a^2}\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{1}{1+a^2}+\frac{1}{1+a^2}\)

\(\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+a^2}\)

11 tháng 7 2019

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2+2bc+c^2\\b^2=a^2+2ac+c^2\\c^2=a^2+2ab+b^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2-a^2=-2bc\\a^2+c^2-b^2=-2ac\\a^2+b^2-c^2=-2ab\end{matrix}\right.\Rightarrow P=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)

11 tháng 7 2019

a) \(P=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}\) ( Sửa đề )

\(P=\frac{1}{\left(b+c\right)^2-2ab-a^2}+\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(a+c\right)^2-2ac-b^2}\)

Vì a + b + c = 0

Nên a + b = -c

=> ( a + b )2 = (-c)2 = c2

Tương tự: ( b + c )2 = a2 và ( a + c )2 = b2

\(\Rightarrow P=\frac{1}{a^2-2bc-a^2}+\frac{1}{c^2-2ab-c^2}+\frac{1}{b^2-2ac-b^2}\)

\(P=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ac}\)

\(P=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)