K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

+) Ta có: AB là đường trung trực của HE (gt).

\(\Rightarrow AE=AH\) (T/c đường trung trực). \(\left(1\right)\)

+) Ta có: AC là đường trung trực của HF (gt).

\(\Rightarrow AF=AH\) (T/c đường trung trực). \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AE=AF\left(=AH\right).\)

2 tháng 3 2022

cảm ơn bạn nha

a: góc A=180-60=120 dộ

=>góc EAB=60 độ=góc BAI

Xet ΔEAB và ΔIAB có

góc EAB=góc IAB

AB chung

EA=IA

=>ΔEAB=ΔIAB

=>BE=BI

=>AB là trung trực của IE

Chứng minh tương tự, ta được: AC là trung trực của IF

b: góc EAB=góc FAC=60 độ

=>góc EAB+góc BAI=góc FAC+góc IAC

=>góc EAI=góc FAI

Xét ΔEAI và ΔFAI có

AI chung

góc EAI=góc FAI

AE=AF

=>ΔEAI=ΔFAI

=>EI=FI

=>ΔIFE cân tại I

=>góc EIF=2*góc AIE

ΔEAI cân tại A

=>góc AIE=(180-60-60)/2=30 độ

=>góc EIF=60 độ

=>ΔIEF đều

c: góc AIE=góc AIF

=>AI là phân giác của góc EIF
mà ΔEIF đều

nên AI vuông góc EF

25 tháng 4 2018

A B C H L F K O I G P D Q

a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC;  AF=AK 

=> \(\Delta\)ACF=\(\Delta\)ACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng) 

Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.

H là trực tâm của tam giác ABC => CH\(\perp\)AB (tại D)

=> ^HCB + ^ABC = 900 (1)

 Lại có AH\(\perp\)BC => ^LHC + ^HCB = 900 (2)

Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 1800

=> ^ABC + ^AHC = 1800. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 1800

Xét tứ giác AHCK có: ^AKC + ^AHC =1800 => Tứ giác AHCK nội tiếp đường tròn (đpcm).

b) AO cắt GI tại Q

Gọi giao điểm của AO và (O) là P = >^ACP=900 => ^CAP+^CPA=900 (*)

Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC 

Mà ^ABC+^AHC=1800 => ^CPA+^AHC=1800 (3).

Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI

Lại có \(\Delta\)ACF=\(\Delta\)ACK => ^FAC=^KAC hay ^KAI=^GAI  => ^GAI=^CHI

Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn

=> ^AIG+^AHG=1800 hay ^AIG + ^AHC=1800 (4)

Từ (3) và (4) => ^AIG=^CPA (**)

Từ (*) và (**) => ^CAP+^AIG=900 hay ^IAQ+^AIQ=900 => \(\Delta\)AIQ vuông tại Q

Vậy AO vuông góc với GI (đpcm).

a) Ta có: AC là đường trung trực của HF(gt)

⇔A nằm trên đường trung trực của HF

⇔AH=AF(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB là đường trung trực của HE(gt)

⇔A nằm trên đường trung trực của HE

⇔AH=AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AF=AE(Đpcm)

a: góc A=180-60=120 dộ

=>góc EAB=60 độ=góc BAI

Xet ΔEAB và ΔIAB có

góc EAB=góc IAB

AB chung

EA=IA

=>ΔEAB=ΔIAB

=>BE=BI

=>AB là trung trực của IE

Chứng minh tương tự, ta được: AC là trung trực của IF

b: góc EAB=góc FAC=60 độ

=>góc EAB+góc BAI=góc FAC+góc IAC

=>góc EAI=góc FAI

Xét ΔEAI và ΔFAI có

AI chung

góc EAI=góc FAI

AE=AF

=>ΔEAI=ΔFAI

=>EI=FI

=>ΔIFE cân tại I

=>góc EIF=2*góc AIE

ΔEAI cân tại A

=>góc AIE=(180-60-60)/2=30 độ

=>góc EIF=60 độ

=>ΔIEF đều

c: góc AIE=góc AIF

=>AI là phân giác của góc EIF
mà ΔEIF đều

nên AI vuông góc EF

a: góc A=180-60=120 dộ

=>góc EAB=60 độ=góc BAI

Xet ΔEAB và ΔIAB có

góc EAB=góc IAB

AB chung

EA=IA

=>ΔEAB=ΔIAB

=>BE=BI

=>AB là trung trực của IE

Chứng minh tương tự, ta được: AC là trung trực của IF

b: góc EAB=góc FAC=60 độ

=>góc EAB+góc BAI=góc FAC+góc IAC

=>góc EAI=góc FAI

Xét ΔEAI và ΔFAI có

AI chung

góc EAI=góc FAI

AE=AF

=>ΔEAI=ΔFAI

=>EI=FI

=>ΔIFE cân tại I

=>góc EIF=2*góc AIE

ΔEAI cân tại A

=>góc AIE=(180-60-60)/2=30 độ

=>góc EIF=60 độ

=>ΔIEF đều

c: góc AIE=góc AIF

=>AI là phân giác của góc EIF
mà ΔEIF đều

nên AI vuông góc EF

6 tháng 7 2018

Câu d nè bn.

d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)

➡️Góc ABC = 60°

mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)

➡️∆ BFC đều

➡️BC = FC = FB

✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)

➡️AB = 1/2 BC (t/c)

➡️BC = 2 AB

Theo Pitago ta có: 

BC 2 = AB 2 + AC 2

➡️(2 AB) 2 = AB 2 + AC 2 

➡️4 AB 2 - AB 2 = AC 2

➡️3 AB 2 = AC 2

➡️3 AB 2 = 25

➡️AB 2 = 25 ÷ 3 = 25/3

Vậy ta có: BC 2 = 25/3 + 25 = 100/3

➡️BC = √100/3

mà BC = FC (cmt)

➡️FC = √100/3

Vậy đó, hok tốt nhé

28 tháng 8 2020

Bài 1 :                                                             Bài giải

A B C H D F E

Bài 2 :                                                           Bài giải

A C B D E I F

Bài 3 :                                                     Bài giải

A B C D E 1 2 H I

Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có : 

\(BA=BE\) ( gt )

\(BD\) : cạnh chung

\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )

\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)

\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)

....

Tự làm tiếp nha ! Mình bận rồi !