K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

Đề sai à:) Bạn bỏ cái số 1 ở đầu bài đi là mình ra rồi
 

8 tháng 3 2016

Kì vậy:

Hôm qua mình ra

a = 5

b = 1

c = 7

Mà kết quả ko đúng

14 tháng 1 2020

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{2y'z'}{x'^2};\frac{2z'x'}{y'^2};\frac{2x'y'}{z'^2}\right)\) với x', y', z' > 0. Quy về chứng minh:

\(\Sigma_{cyc}\frac{x'^3}{\sqrt{x'^6+8y'^3z'^3}}\ge1\). Đặt \(\left(x'^3;y'^3;z'^3\right)=\left(x;y;z\right)\). Quy về:

\(\Sigma_{cyc}\frac{x}{\sqrt{x^2+8yz}}\ge1\). Đến đây em thấy khá quen thuộc, hình như là bài IMO nào đó, để tối lục lại.

14 tháng 1 2020

Ok, nó đây: https://olm.vn/hoi-dap/detail/229477332481.html

7 tháng 12 2016

Ta có: a + b + c = abc

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Ta lại có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-\frac{3}{4}\)(vô lý)

Vậy không tồn tại a,b,c thỏa mãn bài toán

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Áp dụng hệ quả quen thuộc của BĐT AM-GM:

$3(ab+bc+ac)\leq (a+b+c)^2$

$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$

Do đó:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)

\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)

\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)

Cộng 2 BĐT trên lại:

\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Áp dụng hệ quả quen thuộc của BĐT AM-GM:

$3(ab+bc+ac)\leq (a+b+c)^2$

$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$

Do đó:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)

\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)

\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)

Cộng 2 BĐT trên lại:

\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

11 tháng 3 2016

moi hoc lop 5

14 tháng 11 2016

áp dụng bất đẳng thức:\(\frac{1}{a}\)+\(\frac{1}{b}\)=>\(\frac{4}{a+b}\)(áp dụng 2 cái đầu trc,rồi lấy KQ đó áp dụng típ vào cái thứ 3,rồi cái cuối

15 tháng 11 2016

Ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)

26 tháng 2 2020

\(\frac{-5}{x}=\frac{-y}{8}=\frac{18}{72}\)

\(\Leftrightarrow\frac{-5}{x}=\frac{-y}{8}=\frac{1}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}-\frac{5}{x}=\frac{1}{4}\\-\frac{y}{8}=\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5.4:1\\-y=8.1:4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-20\\-y=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-20\\y=-2\end{cases}}}\)

vậy x=-20 và y=-2

26 tháng 2 2020

\(-\frac{1}{3}-x=\frac{1}{2}-\frac{1}{-4}\)

\(-\frac{1}{3}-x=\frac{1}{2}-\frac{-1}{4}\)

\(-\frac{1}{3}-x=\frac{2}{4}-\frac{-1}{4}\)

\(-\frac{1}{3}-x=\frac{3}{4}\)

\(x=-\frac{1}{3}-\frac{3}{4}\)

\(x=-\frac{4}{12}-\frac{9}{12}\)

\(x=-\frac{13}{12}\)