K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 2 2020

Đặt vế trái là P

\(\frac{a^3}{b^2}+b+b\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)

Tương tự: \(\frac{b^3}{c^2}+2c\ge3b\) ; \(\frac{c^3}{d^2}+2d\ge3c\); \(\frac{d^3}{a^2}+2a\ge3d\)

Cộng vế với vế:

\(P+2\left(a+b+c+d\right)\ge3\left(a+b+c+d\right)\)

\(\Leftrightarrow P\ge a+b+c+d\)

Dấu "=" xảy ra khi \(a=b=c=d\)

12 tháng 2 2017

Xét: \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\)

\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+c^2\ge2\sqrt{b^2c^2}=2bc\\c^2+d^2\ge2\sqrt{c^2d^2}=2cd\\d^2+a^2\ge2\sqrt{d^2a^2}=2da\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\\\frac{bc^2}{b^2+c^2}\le\frac{bc^2}{2bc}=\frac{c}{2}\\\frac{cd^2}{c^2+d^2}\le\frac{cd^2}{2cd}=\frac{d}{2}\\\frac{da^2}{d^2+a^2}\le\frac{da^2}{2da}=\frac{a}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\\b-\frac{bc^2}{b^2+c^2}\ge b-\frac{c}{2}\\c-\frac{cd^2}{c^2+d^2}\ge c-\frac{d}{2}\\d-\frac{da^2}{d^2+a^2}\ge d-\frac{a}{2}\end{matrix}\right.\)

\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge a+b+c+d-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}-\frac{d}{2}\)

\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)

\(\Leftrightarrow\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\) ( đpcm )

12 tháng 2 2017

Cách của bạn Minh dài quá mình xin làm cách ngắn hơn:

Đầu tiên ta chứng minh bổ đề:

\(\frac{x^3}{x^2+y^2}\ge\frac{2x-y}{2}\)

\(\Leftrightarrow2x^3-\left(x^2+y^2\right)\left(2x-y\right)\ge0\)

\(\Leftrightarrow y\left(y-x\right)^2\ge0\)(đúng)

Từ đó ta có: \(\left\{\begin{matrix}\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\\\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2}\\\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2}\\\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\end{matrix}\right.\)

Cộng 4 cái trên vế theo vế ta được

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}=\frac{a+b+c+d}{2}\)

1 tháng 3 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\)

Áp dụng BĐT Cauchy-Schwar dạng Engel ta có:

\(\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}\)

\(=\frac{8^2}{a+b+c+d}=\frac{64}{a+b+c+d}=VP\)

14 tháng 11 2016

áp dụng bất đẳng thức:\(\frac{1}{a}\)+\(\frac{1}{b}\)=>\(\frac{4}{a+b}\)(áp dụng 2 cái đầu trc,rồi lấy KQ đó áp dụng típ vào cái thứ 3,rồi cái cuối

15 tháng 11 2016

Ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)

21 tháng 6 2019

người đăng bài mới học lớp 8 thì trong chương trình lớp 8 chưa đc học Svac-xơ đâu ạ .Nếu dùng cần cm ạ

NV
21 tháng 6 2019

Đặt vế trái là P, áp dụng AM-GM cho từng cặp:

\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge a\) ; \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) ; \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\) ; \(\frac{d^2}{a+d}+\frac{a+d}{4}\ge d\)

Cộng vế với vế:

\(P+\frac{a+b+c+d}{2}\ge a+b+c+d\Rightarrow P\ge\frac{a+b+c+d}{2}\)

\("="\Leftrightarrow a=b=c=d\)

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

15 tháng 6 2020

@Akai Haruma