K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Ta có: \(a^2,b^2,c^2\le1\Leftrightarrow-1\le a,b,c\le1\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge0\left(1\right)\)

Ta lại có: \(\frac{\left(a+b+c+1\right)^2}{2}\ge0\)

\(\Leftrightarrow\frac{a^2+b^2+c^2+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)

\(\Leftrightarrow\frac{1+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)

\(\Leftrightarrow ab+bc+ca+a+b+c+1\ge0\left(2\right)\)

Lấy (1) + (2) vế theo vế ta được

\(abc+2\left(ab+bc+ca+a+b+c+1\right)\ge0\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=0\\c=-1\end{cases}}\) và các hoán vị của nó

30 tháng 3 2017

2(1+a+b+c+ab+bc+ac)
=2(a^2+b^2+c^2+ab+bc+ac)
=(a^2+b^2+c^2+2ab+2bc+2ac)+2(a+b+c) +1
=(a+b+c)^2+2(a+b+c)+1
=(a+b+c+1)^2 >= 0

đúng thì cho 1 tíck nhé 

9 tháng 9 2018

Ta có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\)

DO:

\(\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge9+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)

\(\Rightarrow DPCM\)

Tích t vs ku

9 tháng 2 2020

Ta có: \(a+b+c=0\)

\(\Rightarrow c=-\left(a+b\right)\)

\(\Rightarrow b=-\left(a+c\right)\)

\(\Rightarrow a=-\left(b+c\right)\)

Thay: \(\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\) vào \(M\) ta được:

\(M=\frac{1}{a^2+b^2-\left(a+b\right)^2}+\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(a+c\right)^2}\)

\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}\)

\(=\frac{a+b+c}{-2abc}=0\)

26 tháng 1 2018

Let \(\left(a;b;c\right)\rightarrow\left(\frac{yz}{x^2};\frac{xz}{y^2};\frac{xy}{z^2}\right)\)  we have:

\(\frac{x^4}{y^2z^2+x^2yz+x^4}+\frac{y^4}{x^2z^2+xy^2z+y^4}+\frac{z^4}{x^2y^2+xyz^2+z^4}\ge1\left(○\right)\)

By Cauchy-Schwarz: \(L-H-S_{\left(○\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ_{cyc}x^4+Σ_{cyc}x^2yz+Σ_{cyc}y^2z^2}\)

Hence we need to prove: \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ_{cyc}x^4+Σ_{cyc}x^2yz+Σ_{cyc}y^2z^2}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\geΣ_{cyc}x^4+Σ_{cyc}x^2yz+Σ_{cyc}y^2z^2\)

\(\Leftrightarrow x^2yz+xyz^2+xy^2z\ge x^2y^2+y^2z^2+z^2x^2\)

Follow AM-GM's ineq, it's enough to prove the last ineq

The equality occurs when \(a=b=c=1\)

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm