K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2020

\(ĐK:2019\le x\le2021\)

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\sqrt{x-2019}+\sqrt{2021-x}\le\sqrt{2\left(x-2019+2021-x\right)}=2\)

Lại có: \(\left(x-2020\right)^2+2\ge2\)nên VT = VP khi \(\hept{\begin{cases}x-2019=2021-x\\x-2020=0\end{cases}}\Rightarrow x=2020\)

Vậy nghiệm duy nhất của phương trình là 2020

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và bất đẳng thức Cauchy, ta được: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

14 tháng 11 2020

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)(1)

Lại có \(a+b+c\ge3\sqrt[3]{abc}=3\)( AM-GM và gt abc = 1 )=> \(\frac{a+b+c}{2}\ge\frac{3}{2}\)(2)

Từ (1) và (2) => \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\ge\frac{3}{2}\)

=> \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)( đpcm )

Đẳng thức xảy ra <=> a = b = c = 1

28 tháng 10 2019

5/ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

PT \(\Leftrightarrow2\left(x^2-4x-6\right)+\sqrt{x^2-4x-5}-1=0\)

\(\Leftrightarrow\left(x^2-4x-6\right)\left(2+\frac{1}{\sqrt{x^2-4x-5}+1}\right)=0\)

\(\Leftrightarrow x^2-4x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{matrix}\right.\)

Vậy..

28 tháng 10 2019

Câu 2 a chắc là bình phương hai vế lên,đặt ẩn phụ rồi... chăng?

NV
12 tháng 10 2020

1.

\(A=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{6+2\sqrt{5}}}}{\sqrt{6-2\sqrt{5}}+2}=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)

\(=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{5}-4}}{\sqrt{5}-1+2}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}\)

b. Thôi nhìn biến đổi khủng thế này thì nhường bạn :))

2.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng tính chẵn lẻ

\(\Rightarrow\) có ít nhất một trong 3 hiệu \(a-b\) ; \(a-c\) ; \(b-c\) là chẵn

\(\Rightarrow a+b+c\) chẵn

- Nếu a;b;c cùng số dư khi chia hết cho 3 thì \(a-b;a-c;b-c\) đều chia hết cho 3 \(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)⋮27\Rightarrow a+b+c⋮27\)

Mà 27 và 2 nguyên tố cùng nhau nên \(a+b+c⋮\left(27.2=54\right)\)

- Nếu a;b;c chia 3 ra 3 loại số dư khác nhau là 0;1;2 \(\Rightarrow a+b+c⋮3\)

Đồng thời cả \(a-b;b-c;c-a\) đều ko chia hết cho 3

\(\Rightarrow\) Không thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\)

- Nếu trong 3 số a;b;c có 2 số cùng số dư khi chia hết cho 3 và 1 số chia 3 khác số dư

\(\Rightarrow\) \(a+b+c⋮̸3\)

Trong khi đó ít nhất 1 trong 3 hiệu \(a-b;b-c;c-a\) sẽ có 1 giá trị chia hết cho 3 (do có 2 số cùng số dư khi chia 3)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) ko thỏa mãn

Vậy \(a+b+c⋮54\)

NV
12 tháng 10 2020

2b

Câu này đề có sai ko bạn? Trong căn là \(2\sqrt{x+4}\) thì còn có lý

Pt như nguyên mẫu được biến đổi thành:

\(\left(x^2+6x+9\right)+\left(x-4-2\sqrt{x-4}+1\right)+8=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{x-4}-1\right)^2+8=0\)

Hiển nhiên vô nghiệm

3.

\(\frac{a}{a+1}\ge1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Tương tự: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\) ; \(\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế với vế: \(\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\ge8\)

15 tháng 11 2020

4a) Sử dụng bất đẳng thức AM-GM ta có :

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)

Đẳng thức xảy ra khi x = y > 0

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

câu 1 : a )Cho a,b là các số thực thỏa ab=1 . tìm gtnn A = \(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\) b)Cho xy>0 và \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\) Tính GTLN M=\(\frac{1}{x}+\frac{1}{y}\) c) Cho a,b,c là các số dương . C/m T=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\le\frac{3}{5}\) Câu 2 Giải phương trình a ) \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\) b) \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\) c)...
Đọc tiếp

câu 1 : a )Cho a,b là các số thực thỏa ab=1 . tìm gtnn A = \(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

b)Cho xy>0 và \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

Tính GTLN M=\(\frac{1}{x}+\frac{1}{y}\)

c) Cho a,b,c là các số dương . C/m T=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\le\frac{3}{5}\)

Câu 2 Giải phương trình a ) \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

b) \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

c) \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)

d) \(2-\sqrt{3-2x}=\left|2x-3\right|\)

câu 3 Tính a) A=\(\sqrt{1+1999^2+\frac{1999^2}{200^2}}+\frac{1999}{2000}\)

b) M=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

c) Tìm nghiệm nguyê dương của pt : xy+yz+zx=xyz+2

d) Tìm các số nguyên x để \(x^4-x^2+2x+2\)

là số chính phương

e) Tìm số nguyên dương n để A = \(n^{2006}+n^{2005}+1\)

là số nguyên tố

7
NV
11 tháng 11 2019

Câu 1:

a/ Biểu thức không tồn tại GTNN.

Bạn cứ thử với vài giá trị âm có trị tuyệt đối lớn, ví dụ \(a=-10^3\)\(b=-\frac{1}{10^3}\) sẽ thấy

b/

\(x^3+3x^2+3x+1+y^3+3y^2+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right]+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1-\frac{y+1}{2}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\right]=0\)

\(\Rightarrow x+y=-2\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)

\(\Rightarrow-x+\left(-y\right)=2\)

\(M=\frac{1}{x}+\frac{1}{y}=-\left(\frac{1}{-x}+\frac{1}{-y}\right)\le-\frac{4}{-x+\left(-y\right)}=-\frac{4}{2}=-2\)

\(\Rightarrow M_{max}=-2\) khi \(x=y=-1\)

NV
11 tháng 11 2019

1c/

\(T=\sum\frac{a}{2a+a+b+c}=\frac{1}{25}\sum\frac{a\left(2+3\right)^2}{2a+a+b+c}\le\frac{1}{25}\sum\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)\)

\(\Rightarrow T\le\frac{1}{25}\left(6+\frac{9\left(a+b+c\right)}{a+b+c}\right)=\frac{15}{25}=\frac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

10 tháng 8 2019

\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)\(=\sqrt{6+2.1,4.\sqrt{3-\sqrt{1,4+2.1,7+\sqrt{18-8.1,4\text{​​}}}}}-1,7\)

\(=\sqrt{6+2,8\sqrt{3-\sqrt{1,4+3,4+\sqrt{18-11,2}}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+\sqrt{6,8}}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+2,6}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-\sqrt{7,4}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-2,7}}-1,7\)

\(=\sqrt{88\sqrt{0,3}}-1,7\)

\(=\sqrt{88.0,54}-1,7\)

\(=\sqrt{47,52}-1,7\)

\(=6,9-1,7\)

\(=5,2\)

2,Mệt với câu 1 rồi nên câu 2 và câu 3 chịu

10 tháng 8 2019

hình như sai rồi bạn ơi, lúc học thì thầy mình giải ra kết quả =1 và ko tính căn ra như thế

NV
8 tháng 10 2020

\(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)

\(\Rightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\)

\(\Rightarrow a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\)

\(\Rightarrow a^2-a^4=b^2-b^4\)

\(\Rightarrow a^2-b^2-\left(a^2-b^2\right)\left(a^2+b^2\right)=0\)

\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)

\(\Rightarrow a^2+b^2=1\)

- Với \(y=0\Rightarrow x=1\) là 1 nghiệm của pt

- Với \(y>0\Rightarrow2016^y\) luôn chẵn

\(VT=1+x\left(x^3+x^2+x+1\right)=1+x\left(x+1\right)\left(x^2+1\right)\)

Do \(x\left(x+1\right)\) là tích 2 STN liên tiếp nên luôn chẵn

\(\Rightarrow VT\) luôn lẻ \(\Rightarrow\) pt vô nghiệm

Vậy pt có cặp nghiệm duy nhất \(\left(x;y\right)=\left(0;0\right)\)

12 tháng 10 2020

trả lời giúp mình với ạ

NV
12 tháng 10 2020

\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=9\)

\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)

\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)

\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)

\(B>2\left(\sqrt{36}-1\right)=10>9=A\)

\(\Rightarrow B>A\)

NV
12 tháng 10 2020

Để biểu thức B có nghĩa thì \(xy\ne0\)

Khi đó ta có:

\(x^3+y^3=2x^2y^2\)

\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)

\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ