K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)

Áp dụng bđt AM-GM ta có

\(\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\le1\)\(\Leftrightarrow\left(x+y\right)^2\le2\Rightarrow0< x+y\le\sqrt{2}\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2021

Lời giải:

Vì $0\leq x,y,z\leq 1$ nên:
$x(x-1)(y-1)\geq 0$

$\Leftrightarrow x^2y\geq x^2+xy-x$

Tương tự và cộng theo vế:

$x^2y+y^2z^2+z^2x+1\geq x^2+y^2+z^2+(xy+yz+xz)-(x+y+z)+1(*)$

Lại có:

$(x-1)(y-1)(z-1)\leq 0$

$\Leftrightarrow xyz-(xy+yz+xz)+(x+y+z)-1\leq 0$

$\Leftrightarrow xy+yz+xz-(x+y+z)\geq xyz-1\geq -1$ do $xyz\geq 0(**)$

Từ $(*); (**)\Rightarrow x^2y+y^2z+z^2x+1\geq x^2+y^2+z^2$

Ta có đpcm

Dấu "=" xảy ra khi $(x,y,z)=(0,1,1); (0,0,1)$ và hoán vị.

 

NV
25 tháng 3 2023

Bài này cực kì chặt nên có lẽ phải sử dụng tới BĐT Schur

Đặt \(x+y+z=p\) ; \(xy+yz+zx=q\)

BĐT cần chứng minh tương đương: \(p^3+4q+6\ge2p^2+3pq\) với \(p;q\ge3\)

TH1: \(p\ge q\)

\(p^3+4q+6-2p^2-3pq\ge0\)

\(\Leftrightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge0\)

Do \(\left\{{}\begin{matrix}p\ge q\\p>2\end{matrix}\right.\) \(\Rightarrow\left(p^2-3q\right)\left(p-2\right)\ge\left(p^2-3p\right)\left(p-2\right)\)

\(\Rightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge\left(p^2-3p\right)\left(p-2\right)-2\left(p-3\right)\)

\(=\left(p-3\right)\left(p^2-2p-2\right)=\left(p-3\right)\left[p\left(p-3\right)+p-2\right]\ge0\)

 TH2: \(p\le q\)

Áp dụng BĐT Schur bậc 4:

\(p^4+4q^2+6p\ge5p^2q\Rightarrow p^3+6\ge5pq-\dfrac{4q^2}{P}\)

Do đó ta chỉ cần chứng minh:

\(5pq-\dfrac{4q^2}{p}+4q\ge2p^2+3pq\)

\(\Leftrightarrow p^2q-2q^2+2pq-p^3\ge0\)

\(\Leftrightarrow\left(q-p\right)\left(p^2-2q\right)\ge0\) (đúng)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

24 tháng 5 2022

cho biểu thức trên = P 

\(P=\left(xy\right)^2+\dfrac{1}{\left(xy\right)^2}+2=256\left(xy\right)^2+\dfrac{1}{\left(xy\right)^2}+2-255\left(xy\right)^2< =>P\ge34-255\left(xy\right)^2\)

ta lại có \(x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\dfrac{1}{16}\ge\left(xy\right)^2\)

=> \(P\ge34-\dfrac{255}{16}=18\dfrac{1}{16}\)

Dấu = xảy ra khi x=y=1/2

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

12 tháng 11 2023

Nhân bung ra, rút gọn rồi đưa về bất đẳng thức: \(\sum\dfrac{xy}{z}\ge\sum2x\), đến đây dùng BDT Cauchy là xong rồi em.

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

11 tháng 1 2021