K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 2 2020

Không mất tính tổng quát, giả sử \(a>b>c\)

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}\ge\frac{1}{4}\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2+\frac{1}{\left(a-c\right)^2}\ge\frac{8}{\left(a-c\right)^2}+\frac{1}{\left(a-c\right)^2}=\frac{9}{\left(a-c\right)^2}\)

Mặt khác:

\(a^2+b^2+c^2=\frac{1}{2}\left(a^2+c^2\right)+\frac{1}{2}\left(a^2+c^2\right)+b^2\)

\(\ge\frac{1}{2}\left(a^2+c^2\right)-ac+b^2=\frac{1}{2}\left(a-c\right)^2+b^2\ge\frac{1}{2}\left(a-c\right)^2\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right)\ge\frac{9\left(a-c\right)^2}{2\left(a-c\right)^2}=\frac{9}{2}\)

Dấu "=" xảy ra khi 2 số đối nhau, 1 số bằng 0

1 tháng 12 2019

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó

17 tháng 6 2019

t nói trước đây là bài làm rất xàm nên đừng tin nhé,spam đấy!

Không mất tính tổng quát giả sử \(c\ge0\)

\(a=c+x+y;b=c+y;c=c\)

Ta cần chứng minh \(A=f\left(x;y;c\right)=\left[\left(c+x+y\right)^2+\left(c+y\right)^2+c^2\right]\left[\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right]\ge\frac{9}{2}\)

\(\ge\frac{\left(3c+x+y\right)}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)=T\left(x;y;c\right)\)

Xét hiệu \(T\left(x;y;c\right)-T\left(x;y;0\right)=c\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge0\)

Nên \(T\left(x;y;c\right)\ge T\left(x;y;0\right)=\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\)

Cần chứng minh \(\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge\frac{9}{2}\)

...

Bạn ơi đề đúng không vậy?  a, b, c còn điều kiện nào không? 

12 tháng 4 2020

đặt \(\hept{\begin{cases}x=\frac{a+b}{a-b}\\y=\frac{b+c}{b-c}\\z=\frac{c+a}{c-a}\end{cases}}\)thì xy+yz+zx=-1

xét (x+1)(y+1)(z+1)=\(\left(\frac{a+b}{a-b}+1\right)\left(\frac{b+c}{b-c}+1\right)\left(\frac{c+a}{c-a}+1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

và \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

\(\Rightarrow xy+yz+zx=-1\)

Lại có: \(\left(x+y+z\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge-2\left(xy+yz+zx\right)\)

Do đó: \(\left(\frac{a+b}{a-b}\right)^2+\left(\frac{b+c}{b-c}\right)^2+\left(\frac{c+a}{c-a}\right)^2\ge2\)

\(\Rightarrow\left(\frac{a+b}{a-b}\right)^2-1+\left(\frac{b+c}{b-c}\right)^2-1+\left(\frac{c+a}{c-a}\right)^2+1\ge2-3\)

\(\Rightarrow\frac{4ab}{\left(a-b\right)^2}+\frac{4bc}{\left(b-c\right)^2}+\frac{4ac}{\left(c-a\right)}\ge-1\)

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

18 tháng 9 2021

Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)

Áp dụng bđt cosi ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+2\right)}+\frac{b+1}{12}+\frac{c+2}{18}\ge3\sqrt[3]{\frac{a^3}{12.18}}=\frac{a}{2}\)

Làm tương tự

=>\(VT+\left(\frac{a+1}{12}+\frac{a+2}{18}\right)+\left(\frac{b+1}{12}+\frac{b+2}{18}\right)+\left(\frac{c+1}{12}+\frac{c+2}{18}\right)\ge\frac{a+b+c}{2}\)

=> \(VT\ge\frac{13}{36}.\left(a+b+c\right)-\frac{7}{12}\ge\frac{13}{36}.3-\frac{7}{12}=\frac{1}{2}\)(ĐPCM)

21 tháng 9 2021

dấu suy ra thứ 2 phải là lớn hơn hoặc bằng 8(a+b+c)/36-7/12 chứ

9 tháng 9 2019

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)