K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

áp dụng bất đẳng thức Bunyakovsky ta có 

( 1*√(a + b) + 1*√(b + c) + 1*√(c + a) )^2 ≥ 2.3=6 

vậy GTNN  của S = √(a + b) + √(b + c) + √(c + a) ≥ √6

Dấu bằng xảy ra khi: a = b = c = 1/3

1 tháng 6 2017

Đơn giản là Cauchy-Schwarz

\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(1+1+1\right)\)

\(=3\cdot\left(2a+2b+2c\right)=6\left(a+b+c\right)=1\)

\(\Rightarrow S^2\le6\Rightarrow S\le\sqrt{6}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

1 tháng 6 2017

ta dự đoán điểm khi : \(a=b=c=\frac{1}{3}\)

\(\Rightarrow\sqrt{a+b}=\sqrt{b+c}=\sqrt{a+c}=\sqrt{\frac{2}{3}}\)

Khi đó ta có :

 \(\sqrt{\frac{2}{3}}.\sqrt{a+b}\le\frac{\frac{2}{3}+a+b}{2}\)

\(\sqrt{\frac{2}{3}}.\sqrt{b+c}\le\frac{\frac{2}{3}+b+c}{2}\)

\(\sqrt{\frac{2}{3}}.\sqrt{c+a}\le\frac{\frac{2}{3}+a+c}{2}\)

cộng từng vế 3 bất phương trình ta có 

\(\sqrt{\frac{2}{3}}.S\le\frac{1}{2}\left(\frac{2}{3}+2\left(a+b+c\right)\right)=2\) \(\Leftrightarrow S\le2.\sqrt{\frac{3}{2}}=\sqrt{6}\)

Vậy \(S_{max}=\sqrt{6}\)dấu "=" khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$P^2=(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2\leq (a+b+b+c+c+a)(1+1+1)=6(a+b+c)=6$

$\Rightarrow P\leq \sqrt{6}$

Vậy gtln của $P$ là $\sqrt{6}$. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

17 tháng 3 2016

Bạn ghi đề sai rồi nhé!

17 tháng 3 2016

P=(a+b+c-1-1-4)/a+b+c =( 6-6)/6 = 0

10 tháng 3 2018

1) Đặt P = (a-1)/a +(b-1)/b+(c-4)/c 
Dễ thấy P = 3 - (1/a + 1/b + 4/c) 
Áp dụng BĐT Bu-nhi-a-cốp-xki : 
(1/a + 1/b + 4/c)(a + b + c) <= [căn(1/a).căn a + căn(1/b).căn b + căn(4/c).căn c]^2 = (1 + 1 + 2)^2 = 16 
=> 1/a + 1/b + 4/c <= 16/6 = 8/3 

Suy ra : P >= 3 - 8/3 = 1/3 
Min P = 3 <=> a = b = 3/2 và c = 3 


2) Đặt P = (a+1)/[√(a⁴+a+1) -a²] = {(a + 1).[√(a⁴+a+1) + a²]} / (a^4 + a + 1 - a^2) = (a + 1).[√(a⁴+a+1) + a²]/(a + 1) = √(a⁴+a+1) + a² (nhân liên hợp) 
Ta có : 4a^2 + a√2 -√2 = 0 
=> a^2 = (√2 - a√2)/4 = (1 - a)/(2√2) 
=> a^4 = (1 - 2a + a^2)/8 
Do đó P = √[(1 - 2a + a^2)/8 + a + 1] + (1 - a)/(2√2) = √[(a^2 + 6a + 9)/8] + (1 - a)/(2√2) = (a + 3)/(2√2) + (1 - a)/(2√2) = √2 (đpcm)

10 tháng 3 2018

có phải là \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\)

31 tháng 10 2017

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)

\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{\left(1+1+2\right)^2}{a+b+c}=3-16=-13\)có GTNN là - 13

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{4};c=\frac{1}{2}\)

24 tháng 9 2019

A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}A=aa−1​+bb−1​+cc−4​=1−a1​+1−b1​+1−c4​

=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{\left(1+1+2\right)^2}{a+b+c}=3-16=-13=3−(a1​+b1​+c4​)≤3−a+b+c(1+1+2)2​=3−16=−13có GTNN là - 13

Dấu "=" xảy ra \Leftrightarrow a=b=\frac{1}{4};c=\frac{1}{2}⇔a=b=41​;c=21​
 

4 tháng 3 2016

a.b.c=1 mà a,b,c >0 suy ra a=b=c=1

vậy GTLN của a+b+c=1+1+1=3

11 tháng 10 2019

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=\text{a}-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)

\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)

Áp dụng BĐT Cauchy dạng phân thức :
\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)

\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)

\(\Rightarrow GTLN=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

NV
26 tháng 1 2022

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)

29 tháng 10 2019

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=a-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)

\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)

\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)

\(\Rightarrow GTLN=\frac{3}{4}\) 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!