K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

trả lời lẹ cho tui cấy

17 tháng 9 2021

Ta có :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\)=> \(a+b+c\ge\sqrt{3}\)

\(\frac{a^3}{b^2+1}=\frac{a^3}{b^2+ab+bc+ac}=\frac{a^3}{\left(b+c\right)\left(b+a\right)}\)

Áp dụng bđt cosi ta có:

\(\frac{a^3}{\left(b+a\right)\left(b+c\right)}+\frac{b+a}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{a^3}{8.8}}=\frac{3}{4}a\)

CM tuong tự

=> \(P+2.\left(\frac{b+a}{8}+\frac{b+c}{8}+\frac{a+c}{8}\right)\ge\frac{3}{4}a+\frac{3}{4}b+\frac{3}{4}c\)

=>\(P\ge\frac{a+b+c}{4}\ge\frac{\sqrt{3}}{4}\)

=>\(MinP=\frac{\sqrt{3}}{4}\)xảy ra khi \(a=b=c=\frac{\sqrt{3}}{3}\)

1 tháng 5 2019

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 5 2019

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

22 tháng 2 2020

\(P=\left[\left(2+\frac{1}{a}+\frac{1}{b}\right)+1\right]\left[\left(2+\frac{1}{b}+\frac{1}{c}\right)+1\right]\left[\left(2+\frac{1}{c}+\frac{1}{a}\right)+1\right]\)

\(\ge\left(6\sqrt[3]{\frac{1}{4ab}}+1\right)\left(6\sqrt[3]{\frac{1}{4bc}}+1\right)\left(6\sqrt[3]{\frac{1}{4ca}}+1\right)\)

\(\ge\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ab}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4bc}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ca}}\right)^6}\right]\)

\(=\left[7\sqrt[7]{\left(\frac{1}{4ab}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4bc}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4ca}\right)^2}\right]\)

\(=343\sqrt[7]{\left(\frac{1}{64\left(abc\right)^2}\right)^2}\ge343\sqrt[7]{\left(\frac{1}{64\left[\frac{\left(a+b+c\right)^3}{27}\right]^2}\right)^2}=343\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

P/s: Em chưa check lại đâu nha::D

22 tháng 2 2020

Khúc cuối bài ban nãy là \(\ge343\) nha! Em đánh nhầm

Cách khác (em thử dùng Holder, mới học nên em không chắc lắm):

\(P\ge\left(3+\sqrt[3]{\frac{1}{abc}}+\sqrt[3]{\frac{1}{abc}}\right)^3=\left(3+2\sqrt[3]{\frac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\frac{1}{\left[\frac{\left(a+b+c\right)^3}{27}\right]}}\right)^3\ge343\)

1 tháng 8 2018

Ta có bđt \(ab^2+bc^2+ca^2\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)

\(P=2017\left(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\right)\)

Ta có: \(\frac{a^3}{1+b^2}+\frac{a\left(1+b^2\right)}{4}\ge2\sqrt{\frac{a^3}{1+b^2}.\frac{a\left(1+b^2\right)}{4}}=a^2\)

Tương tự suy ra \(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\ge\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab^2+bc^2+ca^2\right)\)

\(\ge\left(a^2+b^2+c^2\right)-\frac{3}{4}-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)-\frac{3}{4}\ge\frac{3}{4}.3-\frac{3}{4}=\frac{3}{2}\)

21 tháng 2 2020

Áp dụng BĐT AM - GM ta có:

\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)

Chứng minh tương tự ta có:

\(\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\)

\(\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\)

Từ: \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)

Lại có: \(a^2+b^2+c^2\ge ab+bc+ca\)

Hay: \(3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\)

Vì vậy: \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)

\(\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)

\(\Rightarrow Min_P=3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

21 tháng 2 2020

* Dũng kỹ thuật Cô-si ngược dấu

\(P=\left(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\right)+\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)

+ \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)

\(\ge3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

+ \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\frac{a+b+c}{2}=\frac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

Do đó: \(P\ge3\). Dấu "=" \(\Leftrightarrow a=b=c=1\)

4 tháng 2 2020

\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)

\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

Vậy \(Min_S=\frac{27}{4}\)

2 tháng 7 2017

Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)

\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)

cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=2

Vậy minA=3/2 khi a=b=c=2

13 tháng 7 2019

Ctv lá láo gì abj 

7 tháng 12 2017

bài 1

ÁP dụng AM-GM ta có:

\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)

tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)

công tất cả lại ta có:

\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)

\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)

Thay \(a+b+c=3\)vào ta được":

\(P+2\ge3\Leftrightarrow P\ge1\)

Vậy Min là \(1\)

dấu \(=\)xảy ra khi \(a=b=c=1\)