Giải toán trên mạng


Báo cáo sai phạm

A B K N M C H I L O P

Mình giải được câu a thôi

\(\Delta ABM,\Delta AMC\)có đáy BM = MC (AM là trung tuyến) ; chung đường cao AH nên có diện tích bằng nhau (1)

\(\Delta KBM,\Delta KMC\)có đáy BM = MC ; chung đường cao KI nên \(S_{\Delta KBM}=S_{\Delta KMC}=\frac{1}{2}S_{\Delta KBC}\left(2\right)\)

\(\Delta BKM,\Delta ABK\)có đáy \(KM=2AK\)(do \(\frac{AK}{AM}=\frac{1}{3}\)) ; chung đường cao BL nên \(S_{\Delta BKM}=2S_{\Delta ABK}\left(3\right)\)

Từ (2) và (3),ta có \(S_{\Delta BKC}=4S_{\Delta ABK}\left(4\right)\)\(\Delta BKC,\Delta ABK\)có chung đáy BK nên có đường cao CP = 4AO

\(\Delta KNC,\Delta AKN\)có chung đáy KN ; đường cao CP = 4AO nên \(S_{\Delta KNC}=4S_{\Delta AKN}\left(5\right)\Rightarrow S_{\Delta AKC}=5S_{\Delta AKN}\left(6\right)\)

Từ (4) và (5),ta có \(S_{\Delta BKC}+S_{\Delta KNC}=4S_{\Delta ABK}+4S_{\Delta AKN}\)hay \(S_{\Delta BNC}=4S_{\Delta ABN}\)\(\Rightarrow S_{\Delta ABC}=5S_{\Delta ABN}\left(7\right)\)

Từ (1) và (2),ta có \(S_{\Delta ABM}-S_{\Delta BKM}=S_{\Delta AMC}-S_{\Delta KMC}\)hay \(S_{\Delta ABK}=S_{\Delta AKC}\).Kết hợp với (6),ta có :

\(S_{\Delta ABK}=5S_{\Delta AKN}\Rightarrow S_{\Delta ABN}=6S_{\Delta AKN}\).Kết hợp với (7),ta có \(S_{\Delta AKN}=\frac{1}{30}S_{\Delta ABC}\)


Báo cáo sai phạm

A B C M K I J N P D

 Qua M kẻ đường thẳng song song với IJ cắt AB, AC lần lượt tại N và P .

Qua C kẻ đường thẳng song song với AB cắt NP tại D 

\(\Delta ANM\)có IK // MN nên \(\frac{AN}{AI}=\frac{AM}{AK}=3\)( TALET) ; \(\Delta AMP\)có KJ // MP nên \(\frac{AP}{AJ}=\frac{AM}{AK}=3\)

 \(\Rightarrow\frac{AN}{AI}+\frac{AP}{AJ}=3+3=6\Leftrightarrow\frac{AB-BN}{AI}+\frac{AC+CP}{AJ}=6\)

  \(\Leftrightarrow\frac{AB}{AI}-\frac{BN}{AI}+\frac{AC}{AJ}+\frac{CP}{AJ}=6\)TA CÓ \(\Delta BMN=\Delta CMD\left(g.c.g\right)\Rightarrow BN=CD\)

\(\Rightarrow\frac{AB}{AI}-\frac{CD}{AI}+\frac{AC}{AJ}+\frac{CP}{AJ}=6\)MÀ \(\Delta AIJ\)đồng dạng \(\Delta CDP\)(G.G) \(\Rightarrow\frac{CD}{AI}=\frac{CP}{AJ}\Rightarrow\frac{CD}{AI}-\frac{CP}{AJ}=0\)\(\Rightarrow\frac{AB}{AI}+\frac{AC}{AJ}+0=6\Leftrightarrow\frac{AB}{AI}+\frac{AC}{AJ}=6\left(đpcm\right)\)


Báo cáo sai phạm

ko sao


Báo cáo sai phạm

cảm ơn bạn Trần Đức. Mình xin lỗi mình lỡ k đúng cho bạn trên r nên ko k cho bạn được :(((((


Báo cáo sai phạm

cảm ơn bạn nhiều nhé.

Gợi ý cho bạn

Có thể bạn quan tâm

Đang tải dữ liệu...
Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: