K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

ta có (a-b)^2 >= 0 => a^2 + b^2 >= 2ab

                           => 2(a^2+b^2) >= a^2+2ab+b^2

                           => 2(a^2+b^2) >= (a+b)^2 >1 ( vì a+b >1)

                           => a^2+ b^2 >1/2 

          tương tự ta có a^4+b^4 >1/8

6 tháng 3 2018

Ta có : \(a+b>1>0\) (1)

Bình phương hai vế: \(\left(a+b\right)^2>1\Rightarrow a^2+2ab+b^2>1\left(2\right)\)

Mặt khác : \(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\left(3\right)\)

Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\Rightarrow a^2+b^2>\dfrac{1}{2}\left(4\right)\)

Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\dfrac{1}{4}\left(5\right)\)

Mặt khác \(\left(a^2-b^2\right)^2\ge0\Rightarrow a^4-2a^2b^2+b^4\ge0\left(6\right)\)

cộng từng vế của (5) và (6) : \(2\left(a^4+b^4\right)>\dfrac{1}{4}\Rightarrow a^4+b^4>\dfrac{1}{8}\)(đpcm)

6 tháng 3 2018

Cm được x² +y² ≥ (x+y)²/2

<=> x² +y² ≥ 1/2(x² +y²) + xy

<=> 1/2(x² +y²) -xy ≥ 0

<=> 1/2(x-y)² ≥ 0 ( luôn đúng )

vậy x² + y² ≥ (x+y)²/2 = 1/2

tương tự thì x^4 + y^4 ≥ (x² +y²)²/2 ≥ (1/2)²/2 = 1/8

vậy x^4 + y^4 ≥ 1/8

dấu = xảy ra <=> x=y=1/2

7 tháng 4 2017

ta có: a+b=1 => (a+b)2=1

a2+2ab+b2=1 (1)

Mặt khác: (a-b)2\(\ge0\Leftrightarrow a^2-2ab+b^2\ge0\) (2)

Cộng (1) và (2) vế theo vế:

2(a2+b2) > 1

a2+b2> \(\dfrac{1}{2}\)

\(\Leftrightarrow a^4+2a^2b^2+b^4>\dfrac{1}{4}\) (3)

\(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\) (4)

cộng (3) và (4) vế theo vế:

2(a4+b4) >\(\dfrac{1}{4}\)

=> \(a^4+b^4>\dfrac{1}{8}\left(đpcm\right)\)

7 tháng 4 2017

Ta có: \(\left(a+b\right)^2\ge4ab\)mà a+b=1

\(\Rightarrow ab< \dfrac{1}{4}\Rightarrow a^2b^2< \dfrac{1}{16}\)

Mặt khác \(a^4+b^4\ge2a^2b^2\)

\(\Rightarrow a^4+b^4>2.\dfrac{1}{16}=\dfrac{1}{8}\)

18 tháng 8 2016

Ta có : \(a^2+b^2+2ab>1\)

Lại có \(a^2-2ab+b^2\ge0\)

Cộng hai vế bđt trên được \(2\left(a^2+b^2\right)>1\Rightarrow a^2+b^2>\frac{1}{2}\)

\(a^4+2a^2b^2+b^4>\frac{1}{4}\)

Lại có : \(a^4-2a^2b^2+b^4\ge0\)

Cộng hai vế bđt trên được \(2\left(a^4+b^4\right)>\frac{1}{4}\Rightarrow a^4+b^4>\frac{1}{8}\)

18 tháng 8 2016

Tương tự ta được:

\(\left(a+b\right)^2\ge4ab,a+b=1\)

\(\Rightarrow ab< \frac{1}{4}\Rightarrow a^2b^2< \frac{1}{16}\)

Mặt khác \(a^4+b^4\ge2a^2b^2\Rightarrow a^4+b^4>2.\frac{1}{16}=\frac{1}{8}\)

7 tháng 2 2020

Ta có: \(a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\ge\left(\frac{1}{2}\right)^2\)

Và: \(a^4-2a^2b^2+b^4=\left(a^2-b^2\right)^2\ge0\)

Và: \(2\left(a^4+b^4\right)\ge\frac{1}{4}\)

\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(đpcm\right)\)

Ta có \(a+b=1\Leftrightarrow\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\left(1\right)\)

Lại có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\left(2\right)\)

Cộng từng vế (1) và (2) ta được : \(2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\Leftrightarrow a^4+2a^2b^2+b^4\ge\frac{1}{4}\left(3\right)\)

Mặt khác: \(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\left(4\right)\)

Cộng từng vế (3) và (4) ta được

\(2\left(a^4+b^4\right)\ge\frac{1}{4}\Leftrightarrow a^4+b^4\ge\frac{1}{8}\)

Bđt được chứng minh

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

25 tháng 10 2015

ta có \(\left(a+b\right)^2\ge4ab\)   mà \(a+b=1\)

=>\(ab

25 tháng 10 2015

tick cho mình cái mình trả lời rồi mà.

4 tháng 5 2019

https://hoc24.vn/hoi-dap/question/570547.html

3 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\) 

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

\(\Rightarrow a^4+b^4\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\) (dpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

14 tháng 7 2019

Ta có: \(A=\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=3\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{32}-1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=4^{64}-1\)

mà \(B=4^{64}-1\)

Vậy \(B=3A\)

27 tháng 2 2017

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

27 tháng 2 2017

câu 1: a+b>?