K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

Svac-xơ nhé 

\(P=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)\(\Leftrightarrow\)\(\frac{1}{x}=\frac{2}{y}=\frac{4}{z}=\frac{1+2+4}{x+y+z}=7\)

Suy ra \(\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

... 

27 tháng 11 2019

\(A=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)

\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)

\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)

\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)

(Dấu "="\(\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{\sqrt{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)

28 tháng 11 2019

Thêm 1 cách nhé!Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath

@Cool Boy @ Cách làm của em hay lắm nhưng x, y, z >0 em nhé! 

NV
4 tháng 5 2020

\(VT=\frac{1}{16}\left(\frac{1}{x}+\frac{4}{y}+\frac{16}{z}\right)\ge\frac{1}{16}\left(\frac{\left(1+2+4\right)^2}{x+y+z}\right)=\frac{49}{16}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{y}{2}=\frac{z}{4}\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(\frac{1}{7};\frac{2}{7};\frac{4}{7}\right)\)

6 tháng 10 2016

\(P=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

Áp dụng Bđt Cauchy-schwarz dạng engel ta có:

\(P\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)

Dấu = khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{7}\\y=\frac{2}{7}\\z=\frac{1}{7}\end{cases}}\)

Vậy...

6 tháng 5 2020

Cách khác không dùng Cauchy Schwarz

Ta cần chứng minh \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge\frac{49}{16}\)

\(\Leftrightarrow P'=\frac{1}{x}+\frac{4}{y}+\frac{16}{z}\ge49\)

Áp dụng BĐT AM - GM ta có:

\(\frac{1}{x}+49x\ge2\sqrt{\frac{1}{x}\cdot49}=14\)

\(\frac{4}{y}+49y\ge2\sqrt{\frac{4}{y}\cdot49y}=28\)

\(\frac{16}{z}+49z\ge2\sqrt{\frac{16}{z}\cdot49z}=56\)

\(\Rightarrow P'+49\left(x+y+z\right)\ge98\)

\(\Rightarrow P'\ge49\)

31 tháng 5 2016

P=19/8

31 tháng 5 2016

giải rõ ra mới biết

29 tháng 11 2019

Bạn tham khảo tại đây:

Câu hỏi của hoangchau - Toán lớp 9 - Học toán với OnlineMath

Hoặc

Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath

29 tháng 11 2019

Áp dụng BĐT Cauchy - Schwarz ta có ;

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}=\frac{\left(\frac{1}{4}\right)^2}{y^2}+\frac{\left(\frac{1}{2}\right)^2}{y^2}+\frac{1}{z^2}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x^2+y^2+z^2}\)

hay \(M\ge\frac{49}{16}\)

Vậy \(M_{min}=\frac{49}{16}\)

Dấu " = " xảy ra khi \(\frac{1}{4x^2}=\frac{1}{2y^2}=\frac{1}{z^2}\)

hay 

\(x=\sqrt{\frac{1}{7}};y=\sqrt{\frac{2}{7}};z=\sqrt{\frac{4}{7}}\)

9 tháng 1 2019

Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)

\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)

Áp dụng nhiều lần bđt trên ta được

\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)

\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)

\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)

\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)

C/m tương tự cho các bđt còn lại

\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)

\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)

Cộng vế theo vế được

\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)

Dấu "=" xảy ra

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)

\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)

Vậy ..........

10 tháng 1 2019

cách khác :)) 

\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)

\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)

\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)

\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

NV
27 tháng 10 2019

Chắc cái cuối là \(\frac{1}{a+b+c}\) chứ?

\(P\ge\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}-\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(P\ge\sum\left(a+\frac{8}{9a}\right)\)

Ta có đánh giá: \(a+\frac{8}{9a}\ge\frac{a^2+33}{18}\) \(\forall a\in\left(0;3\right)\)

Thật vậy, BĐT tương đương:

\(-a^3+18a^2-33a+16\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(16-a\right)\ge0\) (luôn đúng với \(a\in\left(0;3\right)\))

Thiết lập tương tự và cộng lại:

\(P\ge\frac{a^2+b^2+c^2+99}{18}=\frac{17}{3}\)

29 tháng 11 2019

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}=\left(x^2+y^2+z^2\right)\left(\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\right)\)

Áp dụng BĐT Bunhicopxki ta có :

\(\left(x^2+y^2+z^2\right)\left(\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\right)\ge\left(x.\frac{1}{4x}+y.\frac{1}{2y}+z.\frac{1}{z}\right)^2=\left(\frac{1}{4}+\frac{1}{2}+1\right)^2\)

\(=\frac{49}{16}\)

Dấu " = " xảy ra \(\Leftrightarrow x=\sqrt{\frac{1}{7}};y=\sqrt{\frac{2}{7}};z=\sqrt{\frac{4}{7}}\)