K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0
Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả...
Đọc tiếp

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]

Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả thuyết bằng các chứng minh toán học. Khi những cấu trúc toán học là mô hình tốt cho hiện thực, lúc đó suy luận toán học có thể cung cấp sự hiểu biết sâu sắc hay những tiên đoán về tự nhiên. Thông qua việc sử dụng những phương pháp trừu tượng và lôgic, toán học đã phát triển từ việc đếm, tính toán, đo lường, và nghiên cứu có hệ thống những hình dạng và chuyển động của các đối tượng vật lý. Con người đã ứng dụng toán học trong đời sống từ xa xưa. Việc tìm lời giải cho những bài toán có thể mất hàng năm, hay thậm chí hàng thế kỷ.[11]

Những lập luận chặt chẽ xuất hiện trước tiên trong nền toán học Hy Lạp cổ đại, đáng chú ý nhất là trong tác phẩm Cơ sở của Euclid. Kể từ những công trình tiên phong của Giuseppe Peano (1858–1932), David Hilbert (1862–1943), và của những nhà toán học khác trong thế kỷ 19 về các hệ thống tiên đề, nghiên cứu toán học trở thành việc thiết lập chân lý thông qua suy luận lôgic chặt chẽ từ những tiên đề và định nghĩa thích hợp. Toán học phát triển tương đối chậm cho tới thời Phục hưng, khi sự tương tác giữa những phát minh toán học với những phát kiến khoa học mới đã dẫn đến sự gia tăng nhanh chóng những phát minh toán học vẫn tiếp tục cho đến ngày nay.[12]

Toán học được sử dụng trên khắp thế giới như một công cụ thiết yếu trong nhiều lĩnh vực, bao gồm khoa học, kỹ thuật, y học, và tài chính. Toán học ứng dụng, một nhánh toán học liên quan đến việc ứng dụng kiến thức toán học vào những lĩnh vực khác, thúc đẩy và sử dụng những phát minh toán học mới, từ đó đã dẫn đến việc phát triển nên những ngành toán hoàn toàn mới, chẳng hạn như thống kê và lý thuyết trò chơi. Các nhà toán học cũng dành thời gian cho toán học thuần túy, hay toán học vị toán học. Không có biên giới rõ ràng giữa toán học thuần túy và toán học ứng dụng, và những ứng dụng thực tiễn thường được khám phá từ những gì ban đầu được xem là toán học thuần túy.[13]

Mục lục

1Lịch sử

2Cảm hứng, thuần túy ứng dụng, và vẻ đẹp

3Ký hiệu, ngôn ngữ, tính chặt chẽ

4Các lĩnh vực toán học

4.1Nền tảng và triết học

4.2Toán học thuần túy

4.2.1Lượng

4.2.2Cấu trúc

4.2.3Không gian

4.2.4Sự thay đổi

4.3Toán học ứng dụng

4.3.1Thống kê và những lĩnh vực liên quan

4.3.2Toán học tính toán

5Giải thưởng toán học và những bài toán chưa giải được

6Mối quan hệ giữa toán học và khoa học

7Xem thêm

8Chú thích

9Tham khảo

10Liên kết ngoài

Lịch sử[sửa | sửa mã nguồn]

📷Nhà toán học Hy Lạp Pythagoras (khoảng 570–495 trước Tây lịch), được coi là đã phát minh ra định lý Pythagore.Bài chi tiết: Lịch sử toán học📷Nhà toán học Ba Tư Al-Khwarizmi (Khoảng 780-850 TCN), người phát minh ra Đại số.

Từ "mathematics" trong tiếng Anh bắt nguồn từ μάθημα (máthēma) trong tiếng Hy Lạp cổ, có nghĩa là "thứ học được",[14] "những gì người ta cần biết," và như vậy cũng có nghĩa là "học" và "khoa học"; còn trong tiếng Hy Lạp hiện đại thì nó chỉ có nghĩa là "bài học." Từ máthēma bắt nguồn từ μανθάνω (manthano), từ tương đương trong tiếng Hy Lạp hiện đại là μαθαίνω (mathaino), cả hai đều có nghĩa là "học." Trong tiếng Việt, "toán" có nghĩa là tính; "toán học" là môn học về toán số.[15] Trong các ngôn ngữ sử dụng từ vựng gốc Hán khác, môn học này lại được gọi là số học.

Sự tiến hóa của toán học có thể nhận thấy qua một loạt gia tăng không ngừng về những phép trừu tượng, hay qua sự mở rộng của nội dung ngành học. Phép trừu tượng đầu tiên, mà nhiều loài động vật có được,[16] có lẽ là về các con số, với nhận thức rằng, chẳng hạn, một nhóm hai quả táo và một nhóm hai quả cam có cái gì đó chung, ở đây là số lượng quả trong mỗi nhóm.

Các bằng chứng khảo cổ học cho thấy, ngoài việc biết đếm những vật thể vật lý, con người thời tiền sử có thể cũng đã biết đếm những đại lượng trừu tượng như thời gian - ngày, mùa, và năm.[17]

Đến khoảng năm 3000 trước Tây lịch thì toán học phức tạp hơn mới xuất hiện, khi người Babylon và người Ai Cập bắt đầu sử dụng số học, đại số, và hình học trong việc tính thuế và những tính toán tài chính khác, trong xây dựng, và trong quan sát thiên văn.[18] Toán học được sử dụng sớm nhất trong thương mại, đo đạc đất đai, hội họa, dệt, và trong việc ghi nhớ thời gian.

Các phép tính số học căn bản trong toán học Babylon (cộng, trừ, nhân, và chia) xuất hiện đầu tiên trong các tài liệu khảo cổ. Giữa năm 600 đến 300 trước Tây lịch, người Hy Lạp cổ đã bắt đầu nghiên cứu một cách có hệ thống về toán học như một ngành học riêng, hình thành nên toán học Hy Lạp.[19] Kể từ đó toán học đã phát triển vượt bậc; sự tương tác giữa toán học và khoa học đã đem lại nhiều thành quả và lợi ích cho cả hai. Ngày nay, những phát minh toán học mới vẫn tiếp tục xuất hiện.

Cảm hứng, thuần túy ứng dụng, và vẻ đẹp[sửa | sửa mã nguồn]

Bài chi tiết: Vẻ đẹp của toán học📷Isaac Newton (1643–1727), một trong những người phát minh ra vi tích phân.

Toán học nảy sinh ra từ nhiều kiểu bài toán khác nhau. Trước hết là những bài toán trong thương mại, đo đạc đất đai, kiến trúc, và sau này là thiên văn học; ngày nay, tất cả các ngành khoa học đều gợi ý những bài toán để các nhà toán học nghiên cứu, ngoài ra còn nhiều bài toán nảy sinh từ chính bản thân ngành toán. Chẳng hạn, nhà vật lý Richard Feynman đã phát minh ra tích phân lộ trình (path integral) cho cơ học lượng tử bằng cách kết hợp suy luận toán học với sự hiểu biết sâu sắc về mặt vật lý, và lý thuyết dây - một lý thuyết khoa học vẫn đang trong giai đoạn hình thành với cố gắng thống nhất tất cả các tương tác cơ bản trong tự nhiên - tiếp tục gợi hứng cho những lý thuyết toán học mới.[20] Một số lý thuyết toán học chỉ có ích trong lĩnh vực đã giúp tạo ra chúng, và được áp dụng để giải các bài toán khác trong lĩnh vực đó. Nhưng thường thì toán học sinh ra trong một lĩnh vực có thể hữu ích trong nhiều lĩnh vực, và đóng góp vào kho tàng các khái niệm toán học.

Các nhà toán học phân biệt ra hai ngành toán học thuần túy và toán học ứng dụng. Tuy vậy các chủ đề toán học thuần túy thường tìm thấy một số ứng dụng, chẳng hạn như lý thuyết số trong ngành mật mã học. Việc ngay cả toán học "thuần túy nhất" hóa ra cũng có ứng dụng thực tế chính là điều mà Eugene Wigner gọi là "sự hữu hiệu đến mức khó tin của toán học".[21] Giống như trong hầu hết các ngành học thuật, sự bùng nổ tri thức trong thời đại khoa học đã dẫn đến sự chuyên môn hóa: hiện nay có hàng trăm lĩnh vực toán học chuyên biệt và bảng phân loại các chủ đề toán học đã dài tới 46 trang.[22] Một vài lĩnh vực toán học ứng dụng đã nhập vào những lĩnh vực liên quan nằm ngoài toán học và trở thành những ngành riêng, trong đó có xác suất, vận trù học, và khoa học máy tính.

Những ai yêu thích ngành toán thường thấy toán học có một vẻ đẹp nhất định. Nhiều nhà toán học nói về "sự thanh lịch" của toán học, tính thẩm mỹ nội tại và vẻ đẹp bên trong của nó. Họ coi trọng sự giản đơn và tính tổng quát. Vẻ đẹp ẩn chứa cả bên trong những chứng minh toán học đơn giản và gọn nhẹ, chẳng hạn chứng minh của Euclid cho thấy có vô hạn số nguyên tố, và trong những phương pháp số giúp đẩy nhanh các phép tính toán, như phép biến đổi Fourier nhanh. Trong cuốn sách Lời bào chữa của một nhà toán học (A Mathematician's Apology) của mình, G. H. Hardy tin rằng chính những lý do về mặt thẩm mỹ này đủ để biện minh cho việc nghiên cứu toán học thuần túy. Ông nhận thấy những tiêu chuẩn sau đây đóng góp vào một vẻ đẹp toán học: tầm quan trọng, tính không lường trước được, tính không thể tránh được, và sự ngắn gọn.[23] Sự phổ biến của toán học vì mục đích giải trí là một dấu hiệu khác cho thấy nhiều người tìm thấy sự sảng khoái trong việc giải toán...

Ký hiệu, ngôn ngữ, tính chặt chẽ[sửa | sửa mã nguồn]

Bài chi tiết: Danh sách ký hiệu toán học📷Leonhard Euler, người tạo ra và phổ biến hầu hết các ký hiệu toán học được dùng ngày nay.

Hầu hết các ký hiệu toán học đang dùng ngày nay chỉ mới được phát minh vào thế kỷ 16.[24] Trước đó, toán học được viết ra bằng chữ, quá trình nhọc nhằn này đã cản trở sự phát triển của toán học.[25] Euler (1707–1783) là người tạo ra nhiều trong số những ký hiệu đang được dùng ngày nay. Ký hiệu hiện đại làm cho toán học trở nên dễ hơn đối với chuyên gia toán học, nhưng người mới bắt đầu học toán thường thấy nản lòng. Các ký hiệu cực kỳ ngắn gọn: một vài biểu tượng chứa đựng rất nhiều thông tin. Giống ký hiệu âm nhạc, ký hiệu toán học hiện đại có cú pháp chặt chẽ và chứa đựng thông tin khó có thể viết theo một cách khác đi.

Ngôn ngữ toán học có thể khó hiểu đối với người mới bắt đầu. Những từ như hoặc và chỉ có nghĩa chính xác hơn so với trong lời nói hàng ngày. Ngoài ra, những từ như mở và trường đã được cho những nghĩa riêng trong toán học. Những thuật ngữ mang tính kỹ thuật như phép đồng phôi và khả tích có nghĩa chính xác trong toán học. Thêm vào đó là những cụm từ như nếu và chỉ nếu nằm trong thuật ngữ chuyên ngành toán học. Có lý do tại sao cần có ký hiệu đặc biệt và vốn từ vựng chuyên ngành: toán học cần sự chính xác hơn lời nói thường ngày. Các nhà toán học gọi sự chính xác này của ngôn ngữ và logic là "tính chặt chẽ."

Các lĩnh vực toán học[sửa | sửa mã nguồn]

Bài chi tiết: Các lĩnh vực toán học

Nói chung toán học có thể được chia thành các ngành học về lượng, cấu trúc, không gian, và sự thay đổi (tức là số học, đại số, hình học, và giải tích). Ngoài những mối quan tâm chính này, toán học còn có những lĩnh vực khác khảo sát mối quan hệ giữa toán học và những ngành khác, như với logic và lý thuyết tập hợp, toán học thực nghiệm trong những ngành khoa học khác nhau (toán học ứng dụng), và gần đây hơn là sự nghiên cứu chặt chẽ về tính bất định.

Nền tảng và triết học[sửa | sửa mã nguồn]

📷Kurt Gödel là một trong những nhà logic toán học lớn, với các định lý bất toàn.

Để làm rõ nền tảng toán học, lĩnh vực logic toán học và lý thuyết tập hợp đã được phát triển. Logic toán học bao gồm nghiên cứu toán học về logic và ứng dụng của logic hình thức trong những lĩnh vực toán học khác. Lý thuyết tập hợp là một nhánh toán học nghiên cứu các tập hợp hay tập hợp những đối tượng. Lý thuyết phạm trù, liên quan đến việc xử lý các cấu trúc và mối quan hệ giữa chúng bằng phương pháp trừu tượng, vẫn đang tiếp tục phát triển. Cụm từ "khủng hoảng nền tảng" nói đến công cuộc tìm kiếm một nền tảng toán học chặt chẽ diễn ra từ khoảng năm 1900 đến 1930.[26] Một số bất đồng về nền tảng toán học vẫn còn tồn tại cho đến ngày nay. Cuộc khủng hoảng nền tảng nổi lên từ một số tranh cãi thời đó, trong đó có những tranh cãi liên quan đến lý thuyết tập hợp của Cantor và cuộc tranh cãi giữa Brouwer và Hilbert.

Khoa học máy tính lý thuyết bao gồm lý thuyết khả tính (computability theory), lý thuyết độ phức tạp tính toán, và lý thuyết thông tin. Lý thuyết khả tính khảo sát những giới hạn của những mô hình lý thuyết khác nhau về máy tính, bao gồm mô hình máy Turing nổi tiếng. Lý thuyết độ phức tạp nghiên cứu khả năng có thể giải được bằng máy tính; một số bài toán, mặc dù về lý thuyết có thể giải được bằng máy tính, cần thời gian hay không gian tính toán quá lớn, làm cho việc tìm lời giải trong thực tế gần như không thể, ngay cả với sự tiến bộ nhanh chóng của phần cứng máy tính. Một ví dụ là bài toán nổi tiếng "P = NP?".[27] Cuối cùng, lý thuyết thông tin quan tâm đến khối lượng dữ liệu có thể lưu trữ được trong một môi trường lưu trữ nhất định, và do đó liên quan đến những khái niệm như nén dữ liệu và entropy thông tin.

{\displaystyle p\Rightarrow q\,}📷📷📷📷Logic toán họcLý thuyết tập hợpLý thuyết phạm trùLý thuyết tính toán

Toán học thuần túy[sửa | sửa mã nguồn]

Lượng[sửa | sửa mã nguồn]

Việc nghiên cứu về lượng (quantity) bắt đầu với các con số, trước hết với số tự nhiên và số nguyên và các phép biến đổi số học, nói đến trong lĩnh vực số học. Những tính chất sâu hơn về các số nguyên được nghiên cứu trong lý thuyết số, trong đó có định lý lớn Fermat nổi tiếng. Trong lý thuyết số, giả thiết số nguyên tố sinh đôi và giả thiết Goldbach là hai bài toán chưa giải được.

Khi hệ thống số được phát triển thêm, các số nguyên được xem như là tập con của các số hữu tỉ. Các số này lại được bao gồm trong số thực vốn được dùng để thể hiện những đại lượng liên tục. Số thực được tổng quát hóa thành số phức. Đây là những bước đầu tiên trong phân bố các số, sau đó thì có các quaternion (một sự mở rộng của số phức) và octonion. Việc xem xét các số tự nhiên cũng dẫn đến các số vô hạn (transfinite numbers), từ đó chính thức hóa khái niệm "vô hạn". Một lĩnh vực nghiên cứu khác là kích cỡ (size), từ đó sinh ra số đếm (cardinal numbers) và rồi một khái niệm khác về vô hạn: số aleph, cho phép thực hiện so sánh có ý nghĩa kích cỡ của các tập hợp lớn vô hạn.

{\displaystyle 1,2,3,\ldots \!}📷{\displaystyle \ldots ,-2,-1,0,1,2\,\ldots \!}📷{\displaystyle -2,{\frac {2}{3}},1.21\,\!}📷{\displaystyle -e,{\sqrt {2}},3,\pi \,\!}📷{\displaystyle 2,i,-2+3i,2e^{i{\frac {4\pi }{3}}}\,\!}📷Số tự nhiênSố nguyênSố hữu tỉSố thựcSố phức

Cấu trúc[sửa | sửa mã nguồn]

Nhiều đối tượng toán học, chẳng hạn tập hợp những con số và những hàm số, thể hiện cấu trúc nội tại toát ra từ những phép biến đổi toán học hay những mối quan hệ được xác định trên tập hợp. Toán học từ đó nghiên cứu tính chất của những tập hợp có thể được diễn tả dưới dạng cấu trúc đó; chẳng hạn lý thuyết số nghiên cứu tính chất của tập hợp những số nguyên có thể được diễn tả dưới dạng những phép biến đổi số học. Ngoài ra, thường thì những tập hợp có cấu trúc (hay những cấu trúc) khác nhau đó thể hiện những tính chất giống nhau, khiến người ta có thể xây dựng nên những tiên đề cho một lớp cấu trúc, rồi sau đó nghiên cứu đồng loạt toàn bộ lớp cấu trúc thỏa mãn những tiên đề này. Do đó người ta có thể nghiên cứu các nhóm, vành, trường, và những hệ phức tạp khác; những nghiên cứu như vậy (về những cấu trúc được xác định bởi những phép biến đổi đại số) tạo thành lĩnh vực đại số trừu tượng. Với mức độ tổng quát cao của mình, đại số trừu tượng thường có thể được áp dụng vào những bài toán dường như không liên quan gì đến nhau. Một ví dụ về lý thuyết đại số là đại số tuyến tính, lĩnh vực nghiên cứu về các không gian vectơ, ở đó những yếu tố cấu thành nó gọi là vectơ có cả lượng và hướng và chúng có thể được dùng để mô phỏng các điểm (hay mối quan hệ giữa các điểm) trong không gian. Đây là một ví dụ về những hiện tượng bắt nguồn từ những lĩnh vực hình học và đại sốban đầu không liên quan gì với nhau nhưng lại tương tác rất mạnh với nhau trong toán học hiện đại. Toán học tổ hợp nghiên cứu những cách tính số lượng những đối tượng có thể xếp được vào trong một cấu trúc nhất định.

{\displaystyle {\begin{matrix}(1,2,3)&(1,3,2)\\(2,1,3)&(2,3,1)\\(3,1,2)&(3,2,1)\end{matrix}}}📷📷📷📷📷📷Toán học tổ hợpLý thuyết sốLý thuyết nhómLý thuyết đồ thịLý thuyết trật tựĐại số

Không gian[sửa | sửa mã nguồn]

Việc nghiên cứu không gian bắt đầu với hình học - cụ thể là hình học Euclid. Lượng giác là một lĩnh vực toán học nghiên cứu về mối quan hệ giữa các cạnh và góc của tam giác và với các hàm lượng giác; nó kết hợp không gian và các con số, và bao gồm định lý Pythagore nổi tiếng. Ngành học hiện đại về không gian tổng quát hóa những ý tưởng này để bao gồm hình học nhiều chiều hơn, hình học phi Euclide (đóng vai trò quan trọng trong lý thuyết tương đối tổng quát), và tô pô. Cả lượng và không gian đều đóng vai trò trong hình học giải tích, hình học vi phân, và hình học đại số. Hình học lồi và hình học rời rạc trước đây được phát triển để giải các bài toán trong lý thuyết số và giải tích phiếm hàm thì nay đang được nghiên cứu cho các ứng dụng trong tối ưu hóa (tối ưu lồi) và khoa học máy tính (hình học tính toán). Trong hình học vi phân có các khái niệm bó sợi (fiber bundles) và vi tích phân trên các đa tạp, đặc biệt là vi tích phân vectơ và vi tích phân tensor. Hình học đại số thì mô tả các đối tượng hình học dưới dạng lời giải là những tập hợp phương trình đa thức, cùng với những khái niệm về lượng và không gian, cũng như nghiên cứu về các nhóm tô-pô kết hợp cấu trúc và không gian. Các nhóm Lie được dùng để nghiên cứu không gian, cấu trúc, và sự thay đổi. Tô pô trong tất cả những khía cạnh của nó có thể là một lĩnh vực phát triển vĩ đại nhất của toán học thế kỷ 20; nó bao gồm tô-pô tập hợp điểm (point-set topology), tô-pô lý thuyết tập hợp (set-theoretic topology), tô-pô đại số và tô-pô vi phân (differential topology). Trong đó, những chủ đề của tô-pô hiện đại là lý thuyết không gian mêtric hóa được (metrizability theory), lý thuyết tập hợp tiên đề (axiomatic set theory), lý thuyết đồng luân (homotopy theory), và lý thuyết Morse. Tô-pô cũng bao gồm giả thuyết Poincaré nay đã giải được, và giả thuyết Hodge vẫn chưa giải được. Những bài toán khác trong hình học và tô-pô, bao gồm định lý bốn màu và giả thiết Kepler, chỉ giải được với sự trợ giúp của máy tính.

📷📷📷📷📷📷Hình họcLượng giácHình học vi phânTô pôHình học fractalLý thuyết về độ đo

Sự thay đổi[sửa | sửa mã nguồn]

Hiểu và mô tả sự thay đổi là chủ đề thường gặp trong các ngành khoa học tự nhiên. Vi tích phân là một công cụ hiệu quả đã được phát triển để nghiên cứu sự thay đổi đó. Hàm sốtừ đây ra đời, như một khái niệm trung tâm mô tả một đại lượng đang thay đổi. Việc nghiên cứu chặt chẽ các số thực và hàm số của một biến thực được gọi là giải tích thực, với số phức thì có lĩnh vực tương tự gọi là giải tích phức. Giải tích phiếm hàm (functional analysis) tập trung chú ý vào những không gian thường là vô hạn chiều của hàm số. Một trong nhiều ứng dụng của giải tích phiếm hàm là trong cơ học lượng tử (ví dụ: lý thuyết phiếm hàm mật độ). Nhiều bài toán một cách tự nhiên dẫn đến những mối quan hệ giữa lượng và tốc độ thay đổi của nó, rồi được nghiên cứu dưới dạng các phương trình vi phân. Nhiều hiện tượng trong tự nhiên có thể được mô tả bằng những hệ thống động lực; lý thuyết hỗn độn nghiên cứu cách thức theo đó nhiều trong số những hệ thống động lực này thể hiện những hành vi không tiên đoán được nhưng vẫn có tính tất định.

📷📷📷📷📷📷Vi tích phânVi tích phân vec-tơPhương trình vi phânHệ thống động lựcLý thuyết hỗn độnGiải tích phức

Toán học ứng dụng[sửa | sửa mã nguồn]

Toán học ứng dụng quan tâm đến những phương pháp toán học thường được sử dụng trong khoa học, kỹ thuật, kinh doanh, và công nghiệp. Như vậy, "toán học ứng dụng" là một ngành khoa học toán học với kiến thức đặc thù. Thuật ngữ toán học ứng dụng cũng được dùng để chỉ lĩnh vực chuyên nghiệp, ở đó các nhà toán học giải quyết các bài toán thực tế. Với tư cách là một ngành nghề chú trọng vào các bài toán thực tế, toán học ứng dụng tập trung vào "việc thiết lập, nghiên cứu, và sử dụng những mô hình toán học" trong khoa học, kỹ thuật, và những lĩnh vực thực hành toán học khác. Trước đây, những ứng dụng thực tế đã thúc đẩy sự phát triển các lý thuyết toán học, để rồi sau đó trở thành chủ đề nghiên cứu trong toán học thuần túy, nơi toán học được phát triển chủ yếu cho chính nó. Như vậy, hoạt động của toán học ứng dụng nhất thiết có liên hệ đến nghiên cứu trong lĩnh vực toán học thuần túy.

Thống kê và những lĩnh vực liên quan[sửa | sửa mã nguồn]

Toán học ứng dụng có nhiều phần chung với thống kê, đặc biệt với lý thuyết xác suất. Các nhà thống kê, khi làm việc trong một công trình nghiên cứu, "tạo ra số liệu có ý nghĩa" sử dụng phương pháp tạo mẫu ngẫu nhiên (random sampling) và những thí nghiệm được ngẫu nhiên hóa (randomized experiments);[28] việc thiết kế thí nghiệm hay mẫu thống kê xác định phương pháp phân tích số liệu (trước khi số liệu được tạo ra). Khi xem xét lại số liệu từ các thí nghiệm và các mẫu hay khi phân tích số liệu từ những nghiên cứu bằng cách quan sát, các nhà thống kê "làm bật ra ý nghĩa của số liệu" sử dụng phương pháp mô phỏng và suy luận – qua việc chọn mẫu và qua ước tính; những mẫu ước tính và những tiên đoán có được từ đó cần được thử nghiệm với những số liệu mới.[29]

Lý thuyết thống kê nghiên cứu những bài toán liên quan đến việc quyết định, ví dụ giảm thiểu nguy cơ (sự tổn thất được mong đợi) của một hành động mang tính thống kê, chẳng hạn sử dụng phương pháp thống kê trong ước tính tham số, kiểm nghiệm giả thuyết, và chọn ra tham số cho kết quả tốt nhất. Trong những lĩnh vực truyền thống này của thống kê toán học, bài toán quyết định-thống kê được tạo ra bằng cách cực tiểu hóa một hàm mục tiêu (objective function), chẳng hạn giá thành hay sự mất mát được mong đợi, dưới những điều kiện nhất định.[30] Vì có sử dụng lý thuyết tối ưu hóa, lý thuyết toán học về thống kê có chung mối quan tâm với những ngành khoa học khác nghiên cứu việc quyết định, như vận trù học, lý thuyết điều khiển, và kinh tế học toán.[31]

Toán học tính toán[sửa | sửa mã nguồn]

Toán học tính toán đưa ra và nghiên cứu những phương pháp giải các bài toán toán học mà con người thường không có khả năng giải số được. Giải tích số nghiên cứu những phương pháp giải các bài toán trong giải tích sử dụng giải tích phiếm hàm và lý thuyết xấp xỉ; giải tích số bao gồm việc nghiên cứu xấp xỉ và rời rạc hóa theo nghĩa rộng, với sự quan tâm đặc biệt đến sai số làm tròn (rounding errors). Giải tích số và nói rộng hơn tính toán khoa học (scientific computing) cũng nghiên cứu những chủ đề phi giải tích như khoa học toán học, đặc biệt là ma trận thuật toán và lý thuyết đồ thị. Những lĩnh vực khác của toán học tính toán bao gồm đại số máy tính (computer algebra) và tính toán biểu tượng(symbolic computation).

📷📷📷📷📷📷📷Vật lý toán họcThủy động lực họcGiải tích sốTối ưu hóaLý thuyết xác suấtThống kêMật mã học📷📷📷📷📷 📷📷Tài chính toánLý thuyết trò chơiSinh học toánHóa học toánToán sinh họcKinh tế toánLý thuyết điều khiển

Giải thưởng toán học và những bài toán chưa giải được[sửa | sửa mã nguồn]

Có thể nói giải thưởng toán học danh giá nhất là Huy chương Fields,[32][33] thiết lập vào năm 1936 và nay được trao bốn năm một lần cho 2 đến 4 nhà toán học có độ tuổi dưới 40. Huy chương Fields thường được xem là tương đương với Giải Nobel trong những lĩnh vực khác. (Giải Nobel không xét trao thưởng trong lĩnh vực toán học) Một số giải thưởng quốc tế quan trọng khác gồm có: Giải Wolf về Toán học (thiết lập vào năm 1978) để ghi nhận thành tựu trọn đời; Giải Abel (thiết lập vào năm 2003) dành cho những nhà toán học xuất chúng; Huy chương Chern (thiết lập vào năm 2010) để ghi nhận thành tựu trọn đời.

Năm 1900, nhà toán học người Đức David Hilbert biên soạn một danh sách gồm 23 bài toán chưa có lời giải (còn được gọi là Các bài toán của Hilbert). Danh sách này rất nổi tiếng trong cộng đồng các nhà toán học, và ngày nay có ít nhất chín bài đã được giải. Một danh sách mới bao gồm bảy bài toán quan trọng, gọi là "Các bài toán của giải thiên niên kỷ" (Millennium Prize Problems), đã được công bố vào năm 2000, ai giải được một trong số các bài toán này sẽ được trao giải một triệu đô-la. Chỉ có một bài toán từ danh sách của Hilbert (cụ thể là giả thuyết Riemann) trong danh sách mới này. Tới nay, một trong số bảy bài toán đó (giả thuyết Poincaré) đã có lời giải.

Mối quan hệ giữa toán học và khoa học[sửa | sửa mã nguồn]

Carl Friedrich Gauss, người được xem là "hoàng tử của toán học."[34]

Gauss xem toán học là "nữ hoàng của các ngành khoa học".[35] Trong cụm từ La-tinh Regina Scientiarum và cụm từ tiếng Đức Königin der Wissenschaften (cả hai đều có nghĩa là "nữ hoàng của các ngành khoa học"), từ chỉ "khoa học" có nghĩa là "lĩnh vực tri thức," và đây cũng chính là nghĩa gốc của từ science (khoa học) trong tiếng Anh; như vậy toán học là một lĩnh vực tri thức. Sự chuyên biệt hóa giới hạn nghĩa của "khoa học" vào "khoa học tự nhiên" theo sau sự phát triển của phương pháp luận Bacon, từ đó đối lập "khoa học tự nhiên" với phương pháp kinh viện, phương pháp luận Aristotle nghiên cứu từ những nguyên lý cơ sở. So với các ngành khoa học tự nhiên như sinh học hay vật lý học thì thực nghiệm và quan sát thực tế có vai trò không đáng kể trong toán học. Albert Einstein nói rằng "khi các định luật toán học còn phù hợp với thực tại thì chúng không chắc chắn; và khi mà chúng chắc chắn thì chúng không còn phù hợp với thực tại."[36] Mới đây hơn, Marcus du Sautoy đã gọi toán học là "nữ hoàng của các ngành khoa học;... động lực thúc đẩy chính đằng sau những phát kiến khoa học."[37]

Nhiều triết gia tin rằng, trong toán học, tính có thể chứng minh được là sai (falsifiability) không thể thực hiện được bằng thực nghiệm, và do đó toán học không phải là một ngành khoa học theo như định nghĩa của Karl Popper.[38] Tuy nhiên, trong thập niên 1930, các định lý về tính không đầy đủ (incompleteness theorems) của Gödel đưa ra gợi ý rằng toán học không thể bị quy giảm về logic mà thôi, và Karl Popper kết luận rằng "hầu hết các lý thuyết toán học, giống như các lý thuyết vật lý và sinh học, mang tính giả định-suy diễn: toán học thuần túy do đó trở nên gần gũi hơn với các ngành khoa học tự nhiên nơi giả định mang tính chất suy đoán hơn hơn mức mà người ta nghĩ."[39]

Một quan điểm khác thì cho rằng một số lĩnh vực khoa học nhất định (như vật lý lý thuyết) là toán học với những tiên đề được tạo ra để kết nối với thực tại. Thực sự, nhà vật lý lý thuyết J. M. Ziman đã cho rằng khoa học là "tri thức chung" và như thế bao gồm cả toán học.[40] Dù sao đi nữa, toán học có nhiều điểm chung với nhiều lĩnh vực trong các ngành khoa học vật lý, đáng chú ý là việc khảo sát những hệ quả logic của các giả định. Trực giác và hoạt động thực nghiệm cũng đóng một vai trò trong việc xây dựng nên các giả thuyết trong toán học lẫn trong những ngành khoa học (khác). Toán học thực nghiệm ngày càng được chú ý trong bản thân ngành toán học, và việc tính toán và mô phỏng đang đóng vai trò ngày càng lớn trong cả khoa học lẫn toán học.

Ý kiến của các nhà toán học về vấn đề này không thống nhất. Một số cảm thấy việc gọi toán học là khoa học làm giảm tầm quan trọng của khía cạnh thẩm mỹ của nó, và lịch sử của nó trong bảy môn khai phóng truyền thống; một số người khác cảm thấy rằng bỏ qua mối quan hệ giữa toán học và các ngành khoa học là cố tình làm ngơ trước thực tế là sự tương tác giữa toán học và những ứng dụng của nó trong khoa học và kỹ thuật đã là động lực chính của những phát triển trong toán học. Sự khác biệt quan điểm này bộc lộ trong cuộc tranh luận triết học về chuyện toán học "được tạo ra" (như nghệ thuật) hay "được khám phá ra" (như khoa học). Các viện đại học thường có một trường hay phân khoa "khoa học và toán học".[41] Cách gọi tên này ngầm ý rằng khoa học và toán học gần gũi với nhau nhưng không phải là một.

0
Lôgic toán là một ngành con của toán học có liên hệ gần gũi với cơ sở toán học, khoa học máy tính lý thuyết, logic triết học. Ngành này bao gồm cả hai phần: Nghiên cứu toán học về logic và những ứng dụng của logic hình thức trong các ngành khác của toán học. Các chủ đề thống nhất trong logic toán học bao gồm các nghiên cứu về sức mạnh ý nghĩa của các hệ thống hình thức và sức mạnh...
Đọc tiếp

Lôgic toán là một ngành con của toán học có liên hệ gần gũi với cơ sở toán học, khoa học máy tính lý thuyết, logic triết học. Ngành này bao gồm cả hai phần: Nghiên cứu toán học về logic và những ứng dụng của logic hình thức trong các ngành khác của toán học. Các chủ đề thống nhất trong logic toán học bao gồm các nghiên cứu về sức mạnh ý nghĩa của các hệ thống hình thức và sức mạnh suy diễn của hệ thống chứng minh chính thức.

Ngành này thường được chia thành các lĩnh vực con như lý thuyết mô hình (model theory), lý thuyết chứng minh (proof theory), lý thuyết tập hợp và lý thuyết đệ quy (recursion theory). Nghiên cứu về lôgic toán thường đóng vai trò quan trọng trong ngành cơ sở toán học (foundations of mathematics).

Các tên gọi cũ của lôgic toán là lôgic ký hiệu (để đối lập với lôgic triết học) hay mêta toán học.

Lôgic toán không phải là lôgic của toán học mà là toán học của lôgic. Ngành này bao gồm những phần của lôgic mà có thể được mô hình hóa và nghiên cứu bằng toán học. Nó cũng bao gồm những lĩnh vực thuần túy toán học như lý thuyết mô hình và lý thuyết đệ quy, trong đó, khả năng định nghĩa là trung tâm của vấn đề được quan tâm.logic toán học thể hiện ở cách làm bài. Một bài toán được coi là lôgic thì phải đảm bảo sự chặt chẽ, cách lập luận hợp lý và tuân thủ theo từng bước của bài toán.

0
📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra...
Đọc tiếp

📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.

Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.

Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra các nghịch lý trong lý thuyết tập không hình thức, đã có nhiều hệ tiên đề được đề nghị vào đầu thế kỷ thứ 20, trong đó có các tiên đề Zermelo–Fraenkel, với tiên đề chọn là nổi tiếng nhất.

Ngôn ngữ của lý thuyết tập hợp được dùng trong định nghĩa của gần như tất cả các đối tượng toán học, như hàm số, và các khái niệm lý thuyết tập hợp được đưa nhiều chương trình giảng dạy toán học. Các sự kiện cơ bản về tập hợp và phần tử trong tập hợp có thể được mang ra giới thiệu ở cấp tiểu học, cùng với sơ đồ Venn, để học về tập hợp các đối tượng vật lý thường gặp. Các phép toán cơ bản như hội và giao có thể được học trong bối cảnh này. Các khái niệm cao hơn như bản số là phần tiêu chuẩn của chương trình toán học của sinh viên đại học.

Lý thuyết tập hợp, được hình thức hóa bằng lôgic bậc nhất (first-order logic), là phương pháp toán học nền tảng thường dùng nhất. Ngoài việc sử dụng nó như một hệ thống nền tảng, lý thuyết tập hợp bản thân nó cũng là một nhánh của toán học, với một cộng đồng nghiên cứu tích cực. Các nghiên cứu mới nhất về lý thuyết tập hợp bao gồm nhiều loại chủ đề khác nhau, từ cấu trúc của dòng số thực đến nghiên cứu tính nhất quán của bản số lớn.

Mục lục

1Lịch sử

1.1Thế kỷ 19

1.220. Jahrhundert

2Khái niệm và ký hiệu cơ bản

2.1Quan hệ giữa các tập hợp

2.1.1Quan hệ bao hàm

2.1.2Quan hệ bằng nhau

2.2Các phép toán trên các tập hợp

3Ghi chú

4Liên kết ngoài

5Đọc thêm

Lịch sử[sửa | sửa mã nguồn]

📷Georg Cantor

Các chủ đề về toán học thường xuất hiện và phát triển thông qua sự tương tác giữa các nhà nghiên cứu. Tuy nhiên, lý tuyết tập hợp được tìm thấy năm 1874 bởi Georg Cantor thông qua bài viết: "On a Characteristic Property of All Real Algebraic Numbers".[1][2]

Thế kỷ 19[sửa | sửa mã nguồn]

📷Tập hợp như là một thu góp trong tư tưởng các đối tượng có quan hệ nào đó với nhau.
Cái trống là phần tử của tập hợp
Cuốn sách không phải là phần tử của tập hợp.

Lý thuyết tập hợp được sáng lập bởi Georg Cantor trong những năm 1874 đến năm 1897. Thay cho thuật ngữ "tập hợp", ban đầu ông ta đã sử dụng những từ như "biểu hiện" (inbegriff) hoặc "sự đa dạng" (Mannigfaltigkeit); Về tập hợp và Lý thuyết tập hợp, ông chỉ nói sau đó. Năm 1895, ông đã diễn tả định nghĩa sau:

Qua một "tập hợp", chúng ta hiểu là bất kỳ một tổng hợp M của một số vật thể m khác nhau được xác định rõ ràng trong quan điểm hoặc suy nghĩ của chúng ta (được gọi là "các phần tử" của M) thành một tổng thể.

Cantor phân loại các tập hợp, đặc biệt là những tập hợp vô hạn, theo Lực lượng của chúng. Đối với tập hợp hữu hạn, đây là số lượng các phần tử của chúng. Ông gọi hai tập hợp " có lực lượng bằng nhau" khi chúng được ánh xạ song ánh với nhau, tức là khi có một mối quan hệ một-một giữa các phần tử của chúng. Cái được định nghĩa là sự đồng nhất lực lượng là một quan hệ tương đương, và một lực lượng hay số phần tử của một tập hợp M theo Cantor, là lớp tương đương của các tập hợp có lực lượng bằng M. Ông là người đầu tiên quan sát thấy rằng có những lực lựong vô hạn khác nhau. Tập hợp các số tự nhiên, và tất cả các tập hợp có lực lượng bằng nó, được Cantor gọi là 'Tập hợp đếm được, tất cả các tập hợp vô hạn khác được gọi là tập hợp không đếm được.

Các kết quả quan trọng từ Cantor

Tập hợp của số tự nhiên, số hữu tỉ (lập luận chéo đầu tiên của Cantor) và số đại số là đếm được và có lực lượng bằng nhau.

Tập hợp số thực có lực lượng lớn hơn so với các số tự nhiên, đó là không đếm được (luận chéo thứ hai củaCantor).

Tập hợp của tất cả các tập hợp con của một tập hợp M luôn luôn có lực lượng lớn hơn là M , mà còn được gọi là định lý Cantor.

Từ bất kỳ hai tập hợp có ít nhất một tập hợp cùng lực lượng với một tập hợp con của tập hợp kia.

Có rất nhiều lực lượng của tập hợp không đếm được.

Cantor gọi Giả thiết continuum là "có một lực lượng ở giữa tập hợp các số tự nhiên và tập hợp các số thực " Ông đã cố gắng để giải quyết, nhưng không thành công. Sau đó nó bật ra rằng vấn đề này trên nguyên tắc không quyết định được.

Ngoài Cantor, Richard Dedekind là một nhà tiên phong quan trọng của lý thuyết về lý thuyết tập hợp. Ông đã nói về các "hệ thống" thay vì tập hợp và phát triển một cấu trúc lý thuyết tập hợp của các con số thực vào năm 1872[4], một số lượng lý thuyết xây dựng số thực [2] và 1888 nói về tiên đề hóa lý thuyết tập hợp các con số tự nhiên.[5]Ông là người đầu tiên tạo ra công thức tiên đề Axiom of extensionality của lý thuyết tập hợp.

Ngay từ năm 1889, Giuseppe Peano, người đã miêu tả tập hợp là các tầng lớp, đã tạo ra cách tính toán bằng công thức logic các tầng lớp đầu tiên làm cơ sở cho số học của ông với các tiên đề Peano, mà ông đã mô tả lần đầu tiên trong một ngôn ngữ lý thuyết tập hợp chính xác. Do đó ông đã phát triển cơ sở cho ngông ngữ công thức ngày nay của lý thuyết tập hợp và giới thiệu nhiều biểu tượng được phổ biến ngày nay, đặc biệt là ký hiệu phần tử {\displaystyle \in }📷, được đọc là là "phần tử của"[6]. Trong khi đó {\displaystyle \in }📷 là chữ viết thường của ε (epsilon) của từ ἐστί (tiếng Hy Lạp: "là").[7]

Gottlob Frege đã cố gắng đưa ra một lý giải lý thuyết tập hợp khác của lý thuyết về số học vào năm 1893. Bertrand Russell đã phát hiện ra mâu thuẫn của nó vào năm 1902, được biết đến như là Nghịch lý Russell. Sự mâu thuẫn này và các mâu thuẫn khác nảy sinh do sự thiết lập tập hợp không hạn chế, đó là lý do tại sao dạng thức ban đầu của lý thuyết tập hợp sau này được gọi là lý thuyết tập hợp ngây thơ. Tuy nhiên, định nghĩa của Cantor không có ý muốn nói tới một lý thuyết tập hợp ngây thơ như vậy, như chứng minh của ông về loại tất cả là Nichtmenge cho thấy bởi nghịch lý Cantor thứ hai [6].[8]

Học thuyết của Cantor về lý thuyết tập hợp hầu như không được công nhận bởi những người đương thời về vai trò quan trọng của nó, và không được coi là bước tiến cách mạng, mà đã bị một số các nhà toán học như Leopold Kronecker không chấp nhận. Thậm chí nhiều hơn, nó còn bị mang tiếng khi các nghịch lý được biết tới, ví dụ như Henri Poincaré, chế diễu, "Logic không còn hoàn toàn, bây giờ nó tạo ra những mâu thuẫn."

20. Jahrhundert[sửa | sửa mã nguồn]

Trong thế kỷ XX, những ý tưởng của Cantor tiếp tục chiếm ưu thế; đồng thời, trong Logic toán, một lý thuyết Axiomatic Quantum đã được thiết lập, qua đó có thể vượt qua các mâu thuẫn hiện thời.

Năm 1903/1908 Bertrand Russell phát triển Type theory của mình, trong đó tập hợp luôn luôn có một kiểu cao hơn các phần tử của chúng, do đó sự hình thành các tập hợp có vấn đề sẽ không thể xảy ra. Ông chỉ ra cách đầu tiên ra khỏi những mâu thuẫn và cho thấy trong "Principia Mathematica" của 1910-1913 cũng là một phần hiệu quả của Type theory ứng dụng. Cuối cùng, tuy nhiên, nó chứng tỏ là không thích hợp với lý thuyết tập hợp của Cantor và cũng không thể vượt qua được sự phức tạp của nó.

Tiên đề lý thuyết tập hợp được phát triển bởi Ernst Zermelo vào năm 1907 ngược lại dễ sử dụng và thành công hơn, trong đó schema of replacement của ông là cần thiết để bổ sung vào. Zermelo thêm nó vào hệ thống Zermelo-Fraenkel năm 1930, mà ông gọi tắt là hệ thống-ZF. Ông đã thiết kế nó cho Urelement mà không phải là tập hợp, nhưng có thể là phần tử của tập hợp và được xem như cái Cantor gọi là "đối tượng của quan điểm của chúng tôi." Lý thuyết tập hợp Zermelo-Fraenkel, tuy nhiên, theo ý tưởng Fraenkel là lý thuyết tập hợp thuần túy mà đối tượng hoàn toàn là các tập hợp.

Tuy nhiên, nhiều nhà toán học thay vì theo một tiên đề hợp lý lại chọn một lý thuyết tập hợp thực dụng, tránh tập hợp có vấn đề, chẳng hạn như những áp dụng của Felix Hausdorff1914 hoặc Erich Kamke từ năm 1928. Dần dần các nhà toán học ý thức hơn rằng lý thuyết tập hợp là một cơ bản không thể thiếu cho cấu trúc toán học. Hệ thống ZF chứng minh được trong thực hành, vì vậy ngày nay nó được đa số các nhà toán học công nhận là cơ sở của toán học hiện đại; không còn có mâu thuẫn có thể bắt nguồn từ hệ thống ZF. Tuy nhiên, sự không mâu thuẫn chỉ có thể được chứng minh cho lý thuyết tập hợp với tập hợp hữu hạn, chứ không phải cho toàn bộ hệ thống ZF, mà chứa lý thuyết tập hợp của Cantor với tập hợp vô hạn. Theo Gödel's incompleteness theorems năm 1931 một chứng minh về tính nhất quán về nguyên tắc là không thể được. Những khám phá Gödel chỉ là chương trình của Hilbert để cung cấp toán học và lý thuyết tập hợp vào một cơ sở tiên đề không mâu thuẫn được chứng minh, một giới hạn, nhưng không cản trở sự thành công của lý thuyết trong bất kỳ cách nào, vì vậy mà một khủng hoảng nền tảng của toán học, mà những người ủng hộ của Intuitionismus, trong thực tế không được cảm thấy.

Tuy nhiên, sự công nhận cuối cùng của lý thuyết tập hợp ZF trong thực tế trì hoãn trong một thời gian dài. Nhóm toán học với bút danh Nicolas Bourbaki đã đóng góp đáng kể cho sự công nhận này; họ muốn mô tả mới toán học đồng nhất dựa trên lý thuyết tập hợp và biến đổi nó vào năm 1939 tại các lãnh vực toán học chính thành công. Trong những năm 1960, nó trở nên phổ biến rộng rãi rằng, lý thuyết tập hợp ZF thích hợp là cơ sở cho toán học. Đã có một khoảng thời gian tạm thời trong đó lý thuyết số lượng đã được dạy ở tiểu học.

Song song với câu chuyện thành công của thuyết tập hợp, tuy nhiên, việc thảo luận về các tiên đề tập hợp vẫn còn lưu hành trong thế giới chuyên nghiệp. Nó cũng hình thành những lý thuyết tập hợp tiên đề thay thế khoảng năm 1937 mà không hướng theo Cantor và Zermelo-Fraenkel, nhưng dựa trên Lý thuyết kiểu (Type Theory) của Willard Van Orman Quine từ New Foundations (NF) của ông ta, năm 1940 lý thuyết tập hợp Neumann-Bernays-Godel, mà khái quát hóa ZF về các lớp (Class (set theory)), hay năm 1955, lý thuyết tập hợp Ackermann, khai triển mới định nghĩa tập hợp của Cantor.

Khái niệm và ký hiệu cơ bản[sửa | sửa mã nguồn]

Lý thuyết tập hợp bắt đầu với một quan hệ nhị phân cơ bản giữa một phần tử o và một tập hợp A. Nếu o là một thành viên (hoặc phần tử) của A, ký hiệu o ∈ A được sử dụng. Khi đó ta cũng nói rằng phần tử a thuộc tập hợp A. Vì các tập cũng là các đối tượng, quan hệ phần tử cũng có thể liên quan đến các tập.

Quan hệ giữa các tập hợp[sửa | sửa mã nguồn]

Quan hệ bao hàm[sửa | sửa mã nguồn]

Nếu tất cả các thành viên của tập A cũng là thành viên của tập B , thì A là một Tập hợp con của B , được biểu thị {\displaystyle A\subseteq B}📷, và tập hợp B bao hàm tập hợp A. Ví dụ, {1, 2} là một tập hợp con của {1, 2, 3}, và {2} cũng vậy, nhưng { 1, 4} thì không.

Quan hệ bằng nhau[sửa | sửa mã nguồn]

Hai tập hợp A và B được gọi là bằng nhau nếu A là tập hợp con của B và B cũng là tập hợp con của A, ký hiệu A = B.

Theo định nghĩa, mọi tập hợp đều là tập con của chính nó; tập rỗng là tập con của mọi tập hợp. Mọi tập hợp A không rỗng có ít nhất hai tập con là rỗng và chính nó. Chúng được gọi là các tập con tầm thường của tập A. Nếu tập con B của A khác với chính A, nghĩa là có ít nhất một phần tử của A không thuộc B thì B được gọi là tập con thực sự hay tập con chân chính của tập A.

Chú ý rằng 1 và 2 và 3 là các thành viên của tập {1, 2, 3}, nhưng không phải là tập con, và các tập con, chẳng hạn như {1}, không phải là thành viên của tập {1, 2, 3}.

Các phép toán trên các tập hợp[sửa | sửa mã nguồn]

Hợp (Union): Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu A {\displaystyle \cup }📷 B

Ta có A {\displaystyle \cup }📷 B = {x: x {\displaystyle \in }📷 A hoặc x {\displaystyle \in }📷 B}, hợp của {1, 2, 3} và {2, 3, 4} là tập {1, 2, 3, 4}.

Giao (Intersection): Giao của hai tập hợp A và B là tập hợp tất cả các phần tử vừa thuộc A, vừa thuộc B, ký hiệu A {\displaystyle \cap }📷 B

Ta có A {\displaystyle \cap }📷 B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \in }📷 B}, giao của {1, 2, 3} và {2, 3, 4} là tập { 2, 3}.

Hiệu (Difference): Hiệu của tập hợp A với tập hợp B là tập hợp tất cả các phần tử thuộc A nhưng không thuộc B, ký hiệu {\displaystyle A\setminus B}📷

Ta có: A \ B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \notin }📷 B}Lưu ý, A \ B {\displaystyle \neq }📷 B \ A

Phần bù (Complement): là hiệu của tập hợp con. Nếu A{\displaystyle \subset }📷B thì B \ A được gọi là phần bù của A trong B, ký hiệu CAB (hay CB A)

1
Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước. Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ...
Đọc tiếp

Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước. Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ nhất, và mọi vật chất và năng lượng. Vũ trụ quan sát được có đường kính vào khoảng 28 tỷ parsec (91 tỷ năm ánh sáng) trong thời điểm hiện tại. Các nhà thiên văn chưa biết được kích thước toàn thể của Vũ trụ là bao nhiêu và có thể là vô hạn.Những quan sát và phát triển của vật lý lý thuyết đã giúp suy luận ra thành phần và sự tiến triển của Vũ trụ.

Xuyên suốt các thư tịch lịch sử, các thuyết vũ trụ học và tinh nguyên học, bao gồm các mô hình khoa học, đã từng được đề xuất để giải thích những hiện tượng quan sát của Vũ trụ. Các thuyết địa tâm định lượng đầu tiên đã được phát triển bởi các nhà triết học Hy Lạp cổ đại và triết học Ấn Độ. Trải qua nhiều thế kỷ, các quan sát thiên văn ngày càng chính xác hơn đã đưa tới thuyết nhật tâm của Nicolaus Copernicus và, dựa trên kết quả thu được từ Tycho Brahe, cải tiến cho thuyết đó về quỹ đạo elip của hành tinh bởi Johannes Kepler, mà cuối cùng được Isaac Newton giải thích bằng lý thuyết hấp dẫn của ông. Những cải tiến quan sát được xa hơn trong Vũ trụ dẫn tới con người nhận ra rằng Hệ Mặt Trờinằm trong một thiên hà chứa hàng tỷ ngôi sao, gọi là Ngân Hà. Sau đó các nhà thiên văn phát hiện ra rằng thiên hà của chúng ta chỉ là một trong số hàng trăm tỷ thiên hà khác. Ở trên những quy mô lớn nhất, sự phân bố các thiên hà được giả định là đồng nhất và như nhau trong mọi hướng, có nghĩa là Vũ trụ không có biên hay một tâm đặc biệt nào đó. Quan sát về sự phân bố và vạch phổ của các thiên hà đưa đến nhiều lý thuyết vật lý vũ trụ học hiện đại. Khám phá trong đầu thế kỷ XX về sự dịch chuyển đỏ trong quang phổ của các thiên hà gợi ý rằng Vũ trụ đang giãn nở, và khám phá ra bức xạ nền vi sóng vũ trụcho thấy Vũ trụ phải có thời điểm khởi đầu. Gần đây, các quan sát vào cuối thập niên 1990 chỉ ra sự giãn nở của Vũ trụ đang gia tốc cho thấy thành phần năng lượng chủ yếu trong Vũ trụ thuộc về một dạng chưa biết tới gọi là năng lượng tối. Đa phần khối lượng trong Vũ trụ cũng tồn tại dưới một dạng chưa từng biết đến hay là vật chất tối.

Lý thuyết Vụ Nổ Lớn là mô hình vũ trụ học được chấp thuận rộng rãi, nó miêu tả về sự hình thành và tiến hóa của Vũ trụ. Không gian và thời gian được tạo ra trong Vụ Nổ Lớn, và một lượng cố định năng lượng và vật chất choán đầy trong nó; khi không gian giãn nở, mật độ của vật chất và năng lượng giảm. Sau sự giãn nở ban đầu, nhiệt độ Vũ trụ giảm xuống đủ lạnh cho phép hình thành lên những hạt hạ nguyên tử đầu tiên và tiếp sau là những nguyên tử đơn giản. Các đám mây khổng lồ chứa những nguyên tố nguyên thủy này theo thời gian dưới ảnh hưởng của lực hấp dẫn kết tụ lại thành các ngôi sao. Nếu giả sử mô hình phổ biến hiện nay là đúng, thì tuổi của Vũ trụ có giá trị tính được từ những dữ liệu quan sát là 13,799 ± 0,021 tỷ năm..

Có nhiều giả thiết đối nghịch nhau về Số phận sau cùng của Vũ trụ. Các nhà vật lý và triết học vẫn không biết chắc về những gì, nếu bất cứ điều gì, có trước Vụ Nổ Lớn. Nhiều người phản bác những ước đoán, nghi ngờ bất kỳ thông tin nào từ trạng thái trước này có thể thu thập được. Có nhiều giả thuyết về đa vũ trụ, trong đó một vài nhà vũ trụ học đề xuất rằng Vũ trụ có thể là một trong nhiều vũ trụ cùng tồn tại song song với nhau.

Mỏi quá !

0
Tô pô hay tô pô học có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm topos (nghĩa là "nơi chốn") và logos (nghiên cứu), là một ngành toán học nghiên cứu các đặc tính còn được bảo toàn qua các sự biến dạng, sự xoắn, và sự kéo giãn nhưng ngoại trừ việc xé rách và việc dán dính. Do đó, tô pô còn được mệnh danh là "hình học của màng cao su". Các đặc tính đó...
Đọc tiếp

Tô pô hay tô pô học có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm topos (nghĩa là "nơi chốn") và logos (nghiên cứu), là một ngành toán học nghiên cứu các đặc tính còn được bảo toàn qua các sự biến dạng, sự xoắn, và sự kéo giãn nhưng ngoại trừ việc xé rách và việc dán dính. Do đó, tô pô còn được mệnh danh là "hình học của màng cao su". Các đặc tính đó gọi là các bất biến tô pô. Khi ngành học này lần đầu tiên tìm ra trong những năm đầu của thế kỉ 20 thì nó vẫn được gọi bằng tiếng Latinh là geometria situs (hình học của nơi chốn) và analysis situs (giải tích nơi chốn). Từ khoảng 1925 đến 1975 nó đã trở thành lãnh vực lớn mạnh quan trọng bậc nhất của toán học.

Thuật ngữ tô pô cũng để chỉ một đối tượng toán học riêng biệt trong ngành. Với ý nghĩa này, một tô pô là một họ của các tập mở mà có chứa tập trống và toàn bộ không gian, và nó đóng dưới các phép hội bất kì và phép giao hữu hạn. Và đây là định nghĩa của một không gian tô pô.

Mục lục

1Giới thiệu

2Lịch sử

3Dẫn nhập sơ khởi

4Toán học tô pô

5Một số định lý tổng quát về tô pô

6Một số đề tài hữu ích về tô pô đại số

7Phác thảo lý thuyết đi sâu hơn

8Tổng quát hóa

9Xem thêm

10Tham khảo

11Liên kết ngoài

Giới thiệu[sửa | sửa mã nguồn]

📷Một tách cà phê trở thành vòng xuyến qua sự biến dạng hình học bảo toàn các bất biến tô pô. Cả tách cà phê và bánh vòng đều có những tính chất tô pô hoàn toàn giống nhau.

Người ta có phát biểu rằng một nhà tô pô học là người mà không thể phân biệt được sự khác nhau giữa một cái vòng xuyến và một ca đựng bia có quai. Vì cả hai đều là vật rắn và có đúng 1 lỗ hổng. Đôi khi tô pô còn được gọi là hình học về miếng cao suvì trong tô pô thì không có sự phân biệt giữa một đường hình vuông với một đường tròn. Đường hình tròn có thể được kéo co giãn để biến dạng thành hình vuông. Tuy nhiên, đường tròn thì hoàn toàn phân biệt với đường hình số 8, bởi vì không thể nào kéo giãn hình tròn để tạo thành hình số 8 mà không đục xé nó ra thêm một lỗ. Các không gian nghiên cứu trong tô pô gọi là các không gian tô pô. Chúng thay đổi từ dạng quen thuộc như không gian thực n chiều cho đến các cấu trúc vô cùng kì lạ.

Như vậy có thể nói một cách nôm na rằng tô pô là một ngành nghiên cứu về đặc tính của các cấu trúc đặc có tính siêu co giãn, siêu biến dạng nhưng lại không thể bị cắt rời thành nhiều mảnh, không thể bị đâm thủng hay bị dán dính vào nhau.

📷Mặt Mobius-một mặt có thể đi sang bên kia mà không phải vòng qua mép

.

Tô pô giới thiệu thêm một ngôn ngữ hình học mới - như là các phức đơn hình (simplicial complex), đồng luân (homotopy), đối đồng điều (cohomology), đối ngẫu Poincaré (Poincaré duality), phân thớ (fibration), không gian vec tơ tô pô (topological vector space), bó(sheaf), lớp đặc trưng (characteristic class), hàm Morse (Morse function), đại số đồng điều (homological algebra), dãy phổ (spectral sequence). Nó đã tạo ra một tác động chính đến các lĩnh vực rộng rãi của hình học vi phân (differential geometry), hình học đại số(algebraic geometry), hệ thống động lực học (dynamical system), phương trình đạo hàm riêng (partial differential equation) và hàm nhiều biến phức (several complex variables). "Hình học", theo cách diễn giải của Michael Atiyah và trường phái của ông ngày nay, bao gồm điều kể trên. Một cách nội hàm, bộ môn này có các lĩnh vực tô pô tập điểm (point-set topology) hay tô pô đại cương(general topology) nghiên cứu về các không gian tô pô mà không có thêm các điều kiện giới hạn; trong khi các lĩnh vực khác lại nghiên cứu các không gian tô pô giống như là các đa tạp (manifold). Những lĩnh vực đó bao gồm tô pô đại số (algebraic topology) - phát triển từ tô pô tổ hợp (combinatorial topology), tô pô hình học (geometric topology), tô pô ít chiều (low-dimensional topology) - chẳng hạn lo về lý thuyết nút (knot theory), và tô pô vi phân (differential topology).

Đây là bài viết tổng quan về tô pô. Để có các khái niệm chính xác toán học, xem thêm bài không gian tô pô hoặc các bài viết trong danh sách dưới đây. Bài thuật ngữ tô pô bao gồm các định nghĩa của các thuật ngữ dùng trong tô pô học.

Lịch sử[sửa | sửa mã nguồn]

Nguồn gốc của tô pô đã được người ta biết đến từ môn hình học trong các nền văn hóa cổ đại. Gottfried Leibniz là người đầu tiên khai thác thật ngữ analysus situs, sau đó các nghiên cứu trong thế kỉ 19 đã dùng như ngày nay là tô pô. Trong tiểu luận của Leonhard Euler về Bảy cầu Königsberg đã viết về các thành quả tô pô.

Từ topology được nhà toán học người Đức Johann Benedict Listing đưa ra sử dụng lần đầu tiên năm 1847 trong Vorstudien zur Topologie, mặc dù ông đã dùng nó từ mười năm trước

Georg Cantor, cha đẻ của lý thuyết tập hợp, đã khởi sự nghiên cứu lý thuyết tập điểm trong các không gian Euclide vào nửa cuối thế kỉ 19 như là một phần của khảo cứu về chuỗi Fourier.

Năm 1895, Henri Poincaré xuất bản tác phẩm Analyis Situs, đã giới thiệu các khái niệm về đồng luân và đồng điều.

Maurice Fréchet, thống nhất các nghiên cứu về không gian hàm của các nhà toán học Cantor, Volterra, Arzelà, Hadamard, Ascoli và những người khác. Ông đã dẫn nhập khái niệm về không gian metric trong năm 1906.

Năm 1914, Felix Hausdorff, tổng quát hóa đặc tính của không gian metric và đặt ra khái niệm "không gian tô pô" đồng thời cung cấp một định nghĩa mà ngày nay gọi là không gian Hausdorff.

Cuối cùng, vào năm 1922 Kazimierz Kuratowski đã tổng quát hóa thêm một bước nhỏ để đạt tới khái niệm không gian tô pô như hiện nay.

Thuật ngữ topologie được giới thiệu lần đầu ở Đức vào năm 1847 bởi Johann Benedict Listing trong cuốn Vorstudien zur Topologie (Những nghiên cứu trước tác về tô pô), Vandenhoeck và Ruprecht, Göttingen, pp. 67, 1948. Mặc dù vậy, Listing đã dùng chữ này từ mười năm trước. Topology, dạng Anh ngữ, đã được giới thiệu trong bản in của Solomon Lefschetz năm 1930 để thay cho tên trước đó là analysis situs. Riêng thuật ngữ topologist (nhà tô pô học), một chuyên gia trong ngành tô pô, có lẽ đã ra đời khoảng 1920.

📷Danh sách một số nhà nghiên cứu Tô pô ít chiều (low-dimensional topology) gần đây

Dẫn nhập sơ khởi[sửa | sửa mã nguồn]

Các không gian tô pô được tìm thấy sẵn có trong giải tích toán học, đại số trừu tượng và hình học. Điều này đã làm cho ngành nghiên cứu này trở thành đối tượng quan trọng trong việc thống nhất toán học. Tô pô đại cương, hay tô pô tập điểm, xác định và nghiên cứu những đặc tính hữu dụng của các không gian và các ánh xạ như là tính liên thông, tính compact và tính liên tục. Tô pô đại số là công cụ rất mạnh để nghiên cứu các không gian tô pô và các ánh xạ giữa chúng. Nó liên kết "rời rạc" và có nhiều bất biến khả đoán với các ánh xạ và các không gian thường là trong một cách thức có tính hàm tử. Các luận giải từ môn tô pô đại số ảnh hưởng lớn đến đại số trừu tượng và hình học đại số.

📷Bảy cây cầu Königsberg, một bài toán tô pô nổi tiếng

Động cơ rõ ràng phía sau của tô pô là việc một số vấn đề hình học không phụ thuộc vào hình dạng chính xác của đối tượng tham gia mà phụ thuộc vào "cách thức chúng nối kết nhau". Một trong những bài viết đầu tiên về tô pô được Leonhard Euler mô tả rằng không thể tìm ra một cách đi xuyên qua các thị tứ của Königsberg mà chỉ băng qua mỗi cầu nối giữa chúng đúng một lần. Kết quả này không phụ thuộc vào độ dài của các cây cầu, hay ngay cả khoảng cách giữa chúng mà chỉ phụ thuộc vào các đặc tính liên thông: Các cây cầu được nối như thế nào giữa các cù lao và các bờ sông. Bài toán này, được gọi là Bảy cầu ở Königsberg, đã trở thành bài toán dẫn nhập nổi tiếng trong toán, và đưa tới một phân nhánh là lý thuyết đồ thị.

Tương tự, định lý mặt cầu tóc của tô pô đại số bảo rằng "người ta không thể chải xuôi tóc trên một mặt cầu trơn". Ý nghĩa thực của nó là không tồn tại một mặt cầu tóc nào mà không có "xoáy" ngoại trừ tất cả tóc đều dựng đứng. Định lý này lập tức thuyết phục được hầu hết mọi người (do tính thực tế kiểm nghiệm được trên bản thân). Mặc dù rằng những người biết tới định lý này có thể không nhận biết mệnh đề phát biểu chính thức của định lý. Đó là Trên một mặt cầu, không tồn tại trường vectơ tiếp tuyến liên tục không triệt tiêu nào, cũng giống Bài toán Bảy cây cầu, kết quả trên không phụ thuộc vào dạng cầu mà nó còn đúng cho mọi bề mặt "blob" (là các đối tượng thỏa mãn tính trơn của bề mặt), miễn là chúng không có lỗ hổng (thí dụ hình vòng xuyến, hình vòng số 8 sẽ vi phạm điều kiện của định lý mặt cầu tóc - nhưng hình quả trám, hình trái bóng nhựa bị bóp xẹp lại thỏa mãn đòi hỏi của định lý).

Để có thể nghiên cứu các vấn đề mà chúng không hoàn toàn phụ thuộc vào hình dạng của đối tượng, người ta phải tách bạch rõ ra các tính chất nào sẽ phụ thuộc vào hình dạng. Và từ yêu cầu này phát sinh khái niệm về "tương đương tô pô". Trong các thí dụ trên, việc "không thể băng qua mỗi cây cầu chỉ một lần" có thể được áp dụng cho mọi cách xếp đặt của các cây cầu mà vẫn tương đương tô pô với các cây cầu nguyên thủy ở Königsberg; cũng như vậy, định lý mặt cầu tóc đúng cho mọi không gian tô pô tương đương với một hình cầu (như là hình quả trám chẳng hạn).

Nói cách khác, hai không gian là tương đương tô pô nếu tồn tại một phép đồng phôi giữa chúng. Trong trường hợp này, các không gian đó được gọi là đồng phôi và chúng được xét một cách chủ yếu như là có cùng các mục đích (nghiên cứu) của tô pô.

Một cách chính thức, một phép đồng phôi là một song ánh liên tục với hàm ngược cũng liên tục.

Một cách nôm na có thể cho thấy một ý nghĩa rõ hơn: Hai không gian là tương đương tô pô nếu người ta có thể biến dạng một không gian thành cái còn lại mà không phải cắt bỏ hay đục thủng các chi tiết ra và không phải dán các chi tiết lại với nhau. Dĩ nhiên, ở đây ta giả thiết "vật" (không gian) bị biến dạng có khả năng "siêu dẻo". Do vậy, việc nói đùa rằng nhà tô pô học không thể phân biệt được một vòng xuyến và cái ly có quai là vì cái ly có thể bị nặn bóp để trở thành hình vòng xuyến.

Một bài tập đơn giản về tương đương tô pô chia 10 chữ số Ả Rập, 0,1,2,3,4,5,6,7,8,9, thành các lớp có hình dạng tương đương nhau về mặt tô pô. Lớp thứ nhất bao gồm {1,2,3,5,7}; hình dạng các chữ số này không có lỗ hổng. Lớp thứ hai là {0,4,9,6}; hình dạng các chữ số này có đúng 1 lỗ hổng. Và lớp thứ 3 chỉ có một phần tử duy nhất {8} có tới hai lỗ hổng.

Toán học tô pô[sửa | sửa mã nguồn]

Để hiểu được tô pô theo góc độ toán học, có thể phải dùng đến hai khái niệm tập hợp và ánh xạ.

Cho một tập hợp X ≠ {\displaystyle \emptyset }📷 và họ t các tập hợp con của X. Họ t được gọi là tô pô trên X nếu:

{\displaystyle \emptyset }📷 {\displaystyle \in }📷 t, X {\displaystyle \in }📷 t: họ t bao gồm cả X và cả tập hợp rỗng.

Hợp một họ bất kỳ các phần tử của t là một phần tử của t.

Giao của một họ hữu hạn các phần tử của t là một phần tử của t.

Cặp (X,t) khi ấy được gọi là một không gian tô pô, ta có thể ghi tắt X mà không cần ghi đầy đủ là (X,t). Tập {\displaystyle \emptyset }📷 không phải là không gian tôpô.

Một số định lý tổng quát về tô pô[sửa | sửa mã nguồn]

Mọi khoảng đóng trong R có chiều dài hữu hạn là compact. Rộng hơn: Một tập hợp trong R n là compact nếu và chỉ nếu nó đóng và bị chặn. (Xem thêm Định lý Heine-Borel)

Ảnh liên tục của một không gian compact là compact.

Định lý Tychonoff: Tích của các không gian compact là compact.

Mọi dãy điểm trong một không gian mêtric compact có dãy con hội tụ.

Mọi khoảng trong R là liên thông.

Ảnh liên tục của một không gian liên thông (connected space) là liên thông.

Mọi không gian mêtric là không gian Hausdorff, thì cũng là không gian chuẩn tắc và parcompact.

Định lý mêtric hoá cung cấp điều kiện cần và đủ cho một tô pô để trở thành một không gian mêtric.

Định lý mở rộng Tietze: Trong một không gian chuẩn tắc, mọi hàm có giá trị thực liên tục xác định trên một không gian con đóng đều có thể mở rộng thành một hàm liên tục xác định trên toàn bộ không gian đó.

Định lý phạm trù Baire: Nếu X là một không gian metric đủ hay là một không gian Hausdorff compact địa phương, thì hội đếm được của các tập không đâu trù mật có phần trong là tập trống.

Mọi không gian đường liên thông, đường liên thông địa phương, và đơn liên bán địa phương đều có một phủ phổ dụng.

0
Trong toán học và tin học, lý thuyết đồ thị nghiên cứu các tính chất của đồ thị. Một cách không chính thức, đồ thị là một tập các đối tượng được gọi là các đỉnh (hoặc nút) nối với nhau bởi các cạnh (hoặc cung). Cạnh có thể có hướng hoặc vô hướng. Đồ thị thường được vẽ dưới dạng một tập các điểm (các đỉnh nối với nhau bằng các đoạn thẳng (các cạnh).Đồ...
Đọc tiếp


Trong toán học và tin học, lý thuyết đồ thị nghiên cứu các tính chất của đồ thị. Một cách không chính thức, đồ thị là một tập các đối tượng được gọi là các đỉnh (hoặc nút) nối với nhau bởi các cạnh (hoặc cung). Cạnh có thể có hướng hoặc vô hướng. Đồ thị thường được vẽ dưới dạng một tập các điểm (các đỉnh nối với nhau bằng các đoạn thẳng (các cạnh).Đồ thị biểu diễn được rất nhiều cấu trúc, nhiều bài toán thực tế có thể được biểu diễn bằng đồ thị. Ví dụ, cấu trúc liên kết của một website có thể được biểu diễn bằng một đồ thị có hướng như sau: các đỉnh là các trang web hiện có tại website, tồn tại một cạnh có hướng nối từ trang A tới trang B khi và chỉ khi A có chứa 1 liên kết tới B. Do vậy, sự phát triển của các thuật toán xử lý đồ thị là một trong các mối quan tâm chính của khoa học máy tính.Cấu trúc đồ thị có thể được mở rộng bằng cách gán trọng số cho mỗi cạnh. Có thể sử dụng đồ thị có trọng số để biểu diễn nhiều khái niệm khác nhau. Ví dụ, nếu đồ thị biểu diễn một mạng đường giao thông, các trọng số có thể là độ dài của mỗi con đường. Một cách khác để mở rộng đồ thị cơ bản là quy định hướng cho các cạnh của đồ thị (như đối với các trang web, A liên kết tới B, nhưng B không nhất thiết cũng liên kết tới A). Loại đồ thị này được gọi là đồ thị có hướng. Một đồ thị có hướng với các cạnh có trọng số được gọi là một lưới.Các lưới có nhiều ứng dụng trong khía cạnh thực tiễn của lý thuyết đồ thị, chẳng hạn, phân tích lưới có thể dùng để mô hình hoá và phân tích mạng lưới giao thông hoặc nhằm "phát hiện" hình dáng của Internet - (Xem thêm các ứng dụng đưới đây. Mặc dù vậy, cũng nên lưu ý rằng trong phân tích lưới, thì định nghĩa của khái niệm "lưới" có thể khác nhau và thường được chỉ ra bằng một đồ thị đơn giản.)

Lịch sử[sửa | sửa mã nguồn]

Một trong những kết quả đầu tiên trong lý thuyết đồ thị xuất hiện trong bài báo của Leonhard Euler về Bảy cây cầu ở Königsberg, xuất bản năm 1736. Bài báo này cũng được xem như một trong những kết quả topo đầu tiên trong hình học, tức là, nó không hề phụ thuộc vào bất cứ độ đo nào. Nó diễn tả mối liên hệ sâu sắc giữa lý thuyết đồ thị và tôpô học.Năm 1845, Gustav Kirchhoff đưa ra Định luật Kirchhoff cho mạch điện để tính điện thế và cường độ dòng điện trong mạch điện.Năm 1852 Francis Guthrie đưa ra bài toán bốn màu về vấn đề liệu chỉ với bốn màu có thể tô màu một bản đồ bất kì sao cho không có hai nước nào cùng biên giới được tô cùng màu. Bài toán này được xem như đã khai sinh ra lý thuyết đồ thị, và chỉ được giải sau một thế kỉ vào năm 1976 bởi Kenneth Appel và Wolfgang Haken. Trong khi cố gắng giải quyết bài toán này, các nhà toán học đã phát minh ra nhiều thuật ngữ và khái niệm nền tảng cho lý thuyết đồ thị.

Định nghĩa[sửa | sửa mã nguồn]

Bài chi tiết: Đồ thị (toán học)

Cách vẽ đồ thị[sửa | sửa mã nguồn]

Bài chi tiết: Vẽ đồ thịĐồ thị được biểu diễn đồ họa bằng cách vẽ một điểm cho mỗi đỉnh và vẽ một cung giữa hai đỉnh nếu chúng được nối bởi một cạnh. Nếu đồ thị là có hướng thì hướng được chỉ bởi một mũi tên.Không nên lẫn lộn giữa một đồ hình của đồ thị với bản thân đồ thị (một cấu trúc trừu tượng, không đồ họa) bởi có nhiều cách xây dựng đồ hình. Toàn bộ vấn đề nằm ở chỗ đỉnh nào được nối với đỉnh nào, và bằng bao nhiêu cạnh. Trong thực hành, thường rất khó để xác định xem hai đồ hình có cùng biểu diễn một đồ thị không. Tùy vào bài toán mà đồ hình này có thể phù hợp và dễ hiểu hơn đồ hình kia.

Các cấu trúc dữ liệu đồ thị[sửa | sửa mã nguồn]

Bài chi tiết: Đồ thị (cấu trúc dữ liệu)Có nhiều cách khác nhau để lưu trữ các đồ thị trong máy tính. Sử dụng cấu trúc dữ liệu nào thì tùy theo cấu trúc của đồ thị và thuật toán dùng để thao tác trên đồ thị đó. Trên lý thuyết, người ta có thể phân biệt giữa các cấu trúc danh sách và các cấu trúc ma trận. Tuy nhiên, trong các ứng dụng cụ thể, cấu trúc tốt nhất thường là kết hợp của cả hai. Người ta hay dùng các cấu trúc danh sách cho các đồ thị thưa (sparse graph), do chúng đòi hỏi ít bộ nhớ. Trong khi đó, các cấu trúc ma trận cho phép truy nhập dữ liệu nhanh hơn, nhưng lại cần lượng bộ nhớ lớn nếu đồ thị có kích thước lớn.

Các cấu trúc danh sách[sửa | sửa mã nguồn]

Danh sách liên thuộc (Incidence list) - Mỗi đỉnh có một danh sách các cạnh nối với đỉnh đó. Các cạnh của đồ thị được có thể được lưu trong một danh sách riêng (có thể cài đặt bằng mảng (array) hoặc danh sách liên kết động (linked list)), trong đó mỗi phần tử ghi thông tin về một cạnh, bao gồm: cặp đỉnh mà cạnh đó nối (cặp này sẽ có thứ tự nếu đồ thị có hướng), trọng số và các dữ liệu khác. Danh sách liên thuộc của mỗi đỉnh sẽ chiếu tới vị trí của các cạnh tương ứng tại danh sách cạnh này.

Danh sách kề (Adjacency list) - Mỗi đỉnh của đồ thị có một danh sách các đỉnh kề nó (nghĩa là có một cạnh nối từ đỉnh này đến mỗi đỉnh đó). Trong đồ thị vô hướng, cấu trúc này có thể gây trùng lặp. Chẳng hạn nếu đỉnh 3 nằm trong danh sách của đỉnh 2 thì đỉnh 2 cũng phải có trong danh sách của đỉnh 3. Lập trình viên có thể chọn cách sử dụng phần không gian thừa, hoặc có thể liệt kê các quan hệ kề cạnh chỉ một lần. Biểu diễn dữ liệu này thuận lợi cho việc từ một đỉnh duy nhất tìm mọi đỉnh được nối với nó, do các đỉnh này đã được liệt kê tường minh.

Các cấu trúc ma trận[sửa | sửa mã nguồn]

Ma trận liên thuộc (Incidence matrix) - Đồ thị được biểu diễn bằng một ma trận {\displaystyle [b_{ij}]}📷 kích thước p × q, trong đó p là số đỉnh và q là số cạnh, {\displaystyle b_{ij}=1}📷 chứa dữ liệu về quan hệ giữa đỉnh {\displaystyle v_{i}}📷 và cạnh {\displaystyle x_{j}}📷. Đơn giản nhất: {\displaystyle b_{ij}=1}📷 nếu đỉnh {\displaystyle v_{i}}📷 là một trong 2 đầu của cạnh {\displaystyle x_{j}}📷, bằng 0 trong các trường hợp khác.

Ma trận kề (Adjaceny matrix) - một ma trận N × N, trong đó N là số đỉnh của đồ thị. Nếu có một cạnh nào đó nối đỉnh {\displaystyle v_{i}}📷với đỉnh {\displaystyle v_{j}}📷 thì phần tử {\displaystyle M_{i,j}}📷 bằng 1, nếu không, nó có giá trị 0. Cấu trúc này tạo thuận lợi cho việc tìm các đồ thị con và để đảo các đồ thị.

Ma trận dẫn nạp (Admittance matrix) hoặc ma trận Kirchhoff (Kirchhoff matrix) hay ma trận Laplace (Laplacian matrix) - được định nghĩa là kết quả thu được khi lấy ma trận bậc (degree matrix) trừ đi ma trận kề. Do đó, ma trận này chứa thông tin cả về quan hệ kề (có cạnh nối hay không) giữa các đỉnh lẫn bậc của các đỉnh đó.

Các bài toán đồ thị[sửa | sửa mã nguồn]

Tìm đồ thị con[sửa | sửa mã nguồn]

Một bài toán thường gặp, được gọi là bài toán đồ thị con đẳng cấu (subgraph isomorphism problem), là tìm các đồ thị con trong một đồ thị cho trước. Nhiều tính chất của đồ thị có tính di truyền, nghĩa là nếu một đồ thị con nào đó có một tính chất thì toàn bộ đồ thị cũng có tính chất đó. Chẳng hạn như một đồ thị là không phẳng nếu như nó chứa một đồ thị hai phía đầy đủ (complete bipartite graph ) {\displaystyle K_{3,3}}📷 hoặc nếu nó chứa đồ thị đầy đủ {\displaystyle K_{5}}📷. Tuy nhiên, bài toán tìm đồ thị con cực đại thỏa mãn một tính chất nào đó thường là bài toán NP-đầy đủ (NP-complete problem).

Bài toán đồ thị con đầy đủ lớn nhất (clique problem) (NP-đầy đủ)

Bài toán tập con độc lập (independent set problem) (NP-đầy đủ)

Tô màu đồ thị[sửa | sửa mã nguồn]

Bài chi tiết: Tô màu đồ thị

Định lý bốn màu (four-color theorem)

Định lý đồ thị hoàn hảo mạnh (strong perfect graph theorem)

Bài toán Erdős-Faber-Lovász conjecture (hiện chưa ai giải được)

Bài toán total coloring conjecture (hiện chưa ai giải được)

Bài toán list coloring conjecture (hiện chưa ai giải được)

Các bài toán đường đi[sửa | sửa mã nguồn]

Bài toán bảy cây cầu Euler (Seven Bridges of Königsberg) còn gọi là "Bảy cây cầu ở Königsberg"

Cây bao trùm nhỏ nhất (Minimum spanning tree)

Cây Steiner

Bài toán đường đi ngắn nhất

Bài toán người đưa thư Trung Hoa (còn gọi là "bài toán tìm hành trình ngắn nhất")

Bài toán người bán hàng (Traveling salesman problem) (NP-đầy đủ) cũng có tài liệu (tiếng Việt) gọi đây là "Bài toán người đưa thư"

Luồng[sửa | sửa mã nguồn]

Định lý luồng cực đại lát cắt cực tiểu

Reconstruction conjecture

Visibility graph problems[sửa | sửa mã nguồn]

Museum guard problem

Các bài toán phủ[sửa | sửa mã nguồn]

Bài chi tiết: Phủ (lý thuyết đồ thị)Các bài toán phủ là các thể hiện cụ thể của các bài toán tìm đồ thị con. Chúng có quan hệ chặt chẽ với bài toán đồ thị con đầy đủ hoặc bài toán tập độc lập.

Bài toán phủ tập (Set cover problem)

Bài toán phủ đỉnh (Vertex cover problem)

Các thuật toán quan trọng[sửa | sửa mã nguồn]

Thuật toán Bellman-Ford

Thuật toán Dijkstra

Thuật toán Ford-Fulkerson

Thuật toán Kruskal

Thuật toán láng giềng gần nhất

Thuật toán Prim

Các lĩnh vực toán học có liên quan

Lý thuyết Ramsey

Toán tổ hợp (Combinatorics)

Ứng dụng

Lý thuyết đồ thị được ứng dụng nhiều trong phân tích lưới. Có hai kiểu phân tích lưới. Kiểu thứ nhất là phân tích để tìm các tính chất về cấu trúc của một lưới, chẳng hạn nó là một scale-free network hay là một small-world network. Kiểu thứ hai, phân tích để đo đạc, chẳng hạn mức độ lưu thông xe cộ trong một phần của mạng lưới giao thông (transportation network).Lý thuyết đồ thị còn được dùng trong nghiên cứu phân tử. Trong vật lý vật chất ngưng tụ, cấu trúc ba chiều phức tạp của các hệ nguyên tử có thể được nghiên cứu một cách định lượng bằng cách thu thập thống kê về các tính chất lý thuyết đồ thị có liên quan đến cấu trúc tô pô của các nguyên tử.

0
*Isaac Newton Jr.Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.Luận...
Đọc tiếp

*Isaac Newton Jr.

Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.

Luận thuyết của ông về Philosophiae Naturalis Principia Mathematica (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học.

Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu.

Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát.

Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein.[3]

Sự nghiệp

📷Newton năm 1702, vẽ bởi Godfrey Kneller

Isaac Newton sinh ra trong một gia đình nông dân. Khi ông ở quãng tuổi từ khoảng 12 đến 17, ông học tại King's School, Grantham, nơi mà ông chỉ học tiếng Latinh và không có Toán. Sau đó, ông rời khỏi trường và đến tháng 10 năm 1659, ông có mặt tại Woolsthorpe-by-Colsterworth, nơi mà mẹ ông, lần thứ hai góa bụa, đang cố gắng khiến ông trở thành một nông dân. Nhưng Newton lại ghét việc đồng áng. Henry Stocks, thầy của ông tại King's School, đã thuyết phục mẹ ông cho ông quay trở lại trường học để ông có thể tiếp tục việc học của mình.

Vào tháng 6 năm 1661, Newton được gửi tới Đại học Cambridge để trở thành luật sư. Tại Cambridge, Newton bị ấn tượng mạnh từ trường phái Euclid, tuy rằng tư duy của ông cũng bị ảnh hưởng bởi trường phái của Roger Bacon và René Descartes. Một đợt dịch bệnh đã khiến trường Cambridge đóng cửa và trong thời gian ở nhà, Newton đã có những phát kiến khoa học quan trọng, dù chúng không được công bố ngay.

Những người có ảnh hưởng đến việc công bố các công trình của Newton là Robert Hooke và Edmond Halley. Sau một cuộc tranh luận về chủ đề quỹ đạo của một hạt khi bay từ vũ trụ vào Trái Đất với Hooke, Newton đã bị cuốn hút vào việc sử dụng định luật vạn vật hấp dẫn và cơ học của ông trong tính toán quỹ đạo Johannes Kepler. Những kết quả này hấp dẫn Halley và ông đã thuyết phục được Newton xuất bản chúng. Từ tháng 8 năm 1684 đến mùa xuân năm 1688, Newton hoàn thành tác phẩm, mà sau này trở thành một trong những công trình nền tảng quan trọng nhất cho vật lý của mọi thời đại, cuốn Philosophiae Naturalis Principia Mathematica.

Trong quyển I của tác phẩm này, Newton giới thiệu các định nghĩa và ba định luật của chuyển động thường được biết với tên gọi sau này là Định luật Newton. Quyển II trình bày các phương pháp luận khoa học mới của Newton thay thế cho triết lý Descartes. Quyển cuối cùng là các ứng dụng của lý thuyết động lực học của ông, trong đó có sự giải thích về thủy triều và lý thuyết về sự chuyển động của Mặt Trăng. Để kiểm chứng lý thuyết về vạn vật hấp dẫn của ông, Newton đã hỏi nhà thiên văn John Flamsteedkiểm tra xem Sao Thổ có chuyển động chậm lại mỗi lần đi gần Sao Mộc không. Flamsteed đã rất sửng sốt nhận ra hiệu ứng này có thật và đo đạc phù hợp với các tính toán của Newton. Các phương trình của Newton được củng cố thêm bằng kết quả quan sát về hình dạng bẹt của Trái Đất tại hai cực, thay vì lồi ra tại hai cực như đã tiên đoán bởi trường phái Descartes. Phương trình của Newton cũng miêu tả được gần đúng chuyển động Mặt Trăng, và tiên đoán chính xác thời điểm quay lại của sao chổi Halley. Trong các tính toán về hình dạng của một vật ít gây lực cản nhất khi nằm trong dòng chảy của chất lỏng hay chất khí, Newton cũng đã viết ra và giải được bài toán giải tích biến phân đầu tiên của thế giới.

Newton sáng tạo ra một phương pháp khoa học rất tổng quát. Ông trình bày phương pháp luận của ông thành bốn quy tắc của lý luận khoa học. Các quy tắc này được phát biểu trong quyển Philosophiae Naturalis Principia Mathematica như sau:

Các hiện tượng tự nhiên phải được giải thích bằng một hệ tối giản các quy luật đúng, vừa đủ và chặt chẽ.

Các hiện tượng tự nhiên giống nhau phải có cùng nguyên nhân như nhau.

Các tính chất của vật chất là như nhau trong toàn vũ trụ.

Một nhận định rút ra từ quan sát tự nhiên chỉ được coi là đúng cho đến khi có một thực nghiệm khác mâu thuẫn với nó.

Bốn quy tắc súc tích và tổng quát cho nghiên cứu khoa học này đã là một cuộc cách mạng về tư duy thực sự vào thời điểm bấy giờ. Thực hiện các quy tắc này, Newton đã hình thành được các định luật tổng quát của tự nhiên và giải thích được gần như tất cả các bài toán khoa học vào thời của ông. Newton còn đi xa hơn việc chỉ đưa ra các quy tắc cho lý luận, ông đã miêu tả cách áp dụng chúng trong việc giải quyết một bài toán cụ thể. Phương pháp giải tích mà ông sáng tạo vượt trội các phương pháp mang tính triết lý hơn là tính chính xác khoa học của Aristoteles và Thomas Aquinas. Newton đã hoàn thiện phương pháp thực nghiệm của Galileo Galilei, tạo ra phương pháp tổng hợp vẫn còn được sử dụng cho đến ngày nay trong khoa học. Những câu chữ sau đây trong quyển Opticks(Quang học) của ông có thể dễ dàng bị nhầm lẫn với trình bày hiện đại của phương pháp nghiên cứu thời nay, nếu Newton dùng từ "khoa học" thay cho "triết lý về tự nhiên":

Cũng như trong toán học, trong triết lý về tự nhiên, việc nghiên cứu các vấn đề hóc búa cần thực hiện bằng phương pháp phân tích và tổng hợp. Nó bao gồm làm thí nghiệm, quan sát, đưa ra những kết luận tổng quát, từ đó suy diễn. Phương pháp này sẽ giúp ta đi từ các hợp chất phức tạp đến nguyên tố, đi từ chuyển động đến các lực tạo ra nó; và tổng quát là từ các hiện tượng đến nguyên nhân, từ nguyên nhân riêng lẻ đến nguyên nhân tổng quát, cho đến khi lý luận dừng lại ở mức tổng quát nhất. Tổng hợp lại các nguyên nhân chúng ta đã khám phá ra thành các nguyên lý, chúng ta có thể sử dụng chúng để giải thích các hiện tượng hệ quả.

Newton đã xây dựng lý thuyết cơ học và quang học cổ điển và sáng tạo ra giải tích nhiều năm trước Gottfried Leibniz. Tuy nhiên ông đã không công bố công trình về giải tích trước Leibniz. Điều này đã gây nên một cuộc tranh cãi giữa Anh và lục địa châu Âu suốt nhiều thập kỷ về việc ai đã sáng tạo ra giải tích trước. Newton đã phát hiện ra định lý nhị thức đúng cho các tích của phân số, nhưng ông đã để cho John Wallis công bố. Newton đã tìm ra một công thức cho vận tốc âm thanh, nhưng không phù hợp với kết quả thí nghiệm của ông. Lý do cho sự sai lệch này nằm ở sự giãn nở đoạn nhiệt, một khái niệm chưa được biết đến thời bấy giờ. Kết quả của Newton thấp hơn γ½ lần thực tế, với γ là tỷ lệ các nhiệt dung của không khí.

Theo quyển Opticks, mà Newton đã chần chừ trong việc xuất bản mãi cho đến khi Hooke mất, Newton đã quan sát thấy ánh sáng trắng bị chia thành phổ nhiều màu sắc, khi đi qua lăng kính (thuỷ tinh của lăng kính có chiết suất thay đổi tùy màu). Quan điểm hạt về ánh sáng của Newton đã xuất phát từ các thí nghiệm mà ông đã làm với lăng kính ở Cambridge. Ông thấy các ảnh sau lăng kính có hình bầu dục chứ không tròn như lý thuyết ánh sáng thời bấy giờ tiên đoán. Ông cũng đã lần đầu tiên quan sát thấy các vòng giao thoa mà ngày nay gọi là vòng Newton, một bằng chứng của tính chất sóng của ánh sáng mà Newton đã không công nhận. Newton đã cho rằng ánh sáng đi nhanh hơn trong thuỷ tinh, một kết luận trái với lý thuyết sóng ánh sáng của Christiaan Huygens.

Newton cũng xây dựng một hệ thống hoá học trong mục 31 cuối quyển Opticks. Đây cũng là lý thuyết hạt, các "nguyên tố" được coi như các sự sắp xếp khác nhau của những nguyên tử nhỏ và cứng như các quả bi-a. Ông giải thích phản ứng hoá học dựa vào ái lực giữa các thành phần tham gia phản ứng. Cuối đời (sau 1678) ông thực hiện rất nhiều các thí nghiệm hoá học vô cơ mà không ra kết quả gì.

Newton rất nhạy cảm với các phản bác đối với các lý thuyết của ông, thậm chí đến mức không xuất bản các công trình cho đến tận sau khi người hay phản bác ông nhất là Hooke mất. Quyển Philosophiae Naturalis Principia Mathematica phải chờ sự thuyết phục của Halley mới ra đời. Ông tỏ ra ngày càng lập dị vào cuối đời khi thực hiện các phản ứng hoá học và cùng lúc xác định ngày tháng cho các sự kiện trong Kinh Thánh. Sau khi Newton qua đời, người ta tìm thấy một lượng lớn thuỷ ngân trong cơ thể của ông, có thể bị nhiễm trong lúc làm thí nghiệm. Điều này hoàn toàn có thể giải thích sự lập dị của Newton.

Newton đã một mình đóng góp cho khoa học nhiều hơn bất cứ một nhân vật nào trong lịch sử của loài người. Ông đã vượt trên tất cả những bộ óc khoa học lớn của thế giới cổ đại, tạo nên một miêu tả cho vũ trụ không tự mâu thuẫn, đẹp và phù hợp với trực giác hơn mọi lý thuyết có trước. Newton đưa ra cụ thể các nguyên lý của phương pháp khoa học có thể ứng dụng tổng quát vào mọi lĩnh vực của khoa học. Đây là điều tương phản lớn so với các phương pháp riêng biệt cho mỗi lĩnh vực của Aristoteles và Aquinas trước đó.

Ngoài việc nghiên cứu khoa học, Newton dùng phần lớn thời gian để nghiên cứu Kinh Thánh, ông tin nhận một Chúa Trời duy nhất là Đấng tạo hóa siêu việt mà người ta không thể phủ nhận sự hiện hữu của ngài khi nhìn ngắm vẻ hùng vĩ của mọi tạo vật.[4][5] Mặc dù được trưởng dưỡng trong một gia đình Anh giáo nhưng vào độ tuổi ba mươi của mình, niềm tin Kitô giáo của Newton nếu công khai ra sẽ không được coi là chính thống.[6]

Cũng có các nhà triết học trước như Galileo và John Philoponus sử dụng phương pháp thực nghiệm, nhưng Newton là người đầu tiên định nghĩa cụ thể và hệ thống cách sử dụng phương pháp này. Phương pháp của ông cân bằng giữa lý thuyết và thực nghiệm, giữa toán học và cơ học. Ông toán học hoá mọi khoa học về tự nhiên, đơn giản hoá chúng thành các bước chặt chẽ, tổng quát và hợp lý, tạo nên sự bắt đầu của Kỷ nguyên Suy luận. Những nguyên lý mà Newton đưa ra do đó vẫn giữ nguyên giá trị cho đến thời đại ngày nay. Sau khi ông ra đi, những phương pháp của ông đã mang lại những thành tựu khoa học lớn gấp bội những gì mà ông có thể tưởng tượng lúc sinh thời. Các thành quả này là nền tảng cho nền công nghệ mà chúng ta được hưởng ngày nay.

Không ngoa dụ chút nào khi nói rằng Newton là danh nhân quan trọng nhất đóng góp cho sự phát triển của khoa học hiện đại. Như nhà thơ Alexander Pope đã viết:

Nature and nature's laws lay hid in night;God said "Let Newton be" and all was light.Tự nhiên và luật tự nhiên lẩn khuất trong màn đêm phủ;Chúa phán: Newton hãy xuất hiện! Và mọi thứ chói lòa.

Tiểu sử

📷Quyển Philosophiae Naturalis Principia Mathematica của Newton📷Isaac Newton (Bolton, Sarah K. Famous Men of Science NY: Thomas Y. Crowell & Co., 1889)

Isaac Newton sinh ra tại một ngôi nhà ở Woolsthorpe, gần Grantham ở Lincolnshire, Anh, vào ngày 25 tháng 12 năm 1642 (4 tháng 1 năm 1643 theo lịch mới). Ông chưa một lần nhìn thấy mặt cha, do cha ông, một nông dân cũng tên là Isaac Newton Sr., mất trước khi ông sinh ra không lâu. Sống không hạnh phúc với cha dượng từ nhỏ, Newton bắt đầu những năm học phổ thông trầm uất, xa nhà và bị gián đoạn bởi các biến cố gia đình. May mắn là do không có khả năng điều hành tài chính trong vai anh cả sau khi cha dượng mất, ông tiếp tục được cho học đại học (trường Trinity College Cambridge) sau phổ thông vào năm 1661, sử dụng học bổng của trường với điều kiện phải phục dịch các học sinh đóng học phí.

Mục tiêu ban đầu của Newton tại Đại học Cambridge là tấm bằng luật sư với chương trình nặng về triết học của Aristotle, nhưng ông nhanh chóng bị cuốn hút bởi toán học của Descartes, thiên văn học của Galileo và cả quang học của Kepler. Ông đã viết trong thời gian này: "Plato là bạn của tôi, Aristotle là bạn của tôi, nhưng sự thật mới là người bạn thân thiết nhất của tôi". Tuy nhiên, đa phần kiến thức toán học cao cấp nhất thời bấy giờ, Newton tiếp cận được là nhờ đọc thêm sách, đặc biệt là từ sau năm 1663, gồm các cuốn Elementscủa Euclid, Clavis Mathematica của William Oughtred, La Géométrie của Descartes, Geometria a Renato Des Cartes của Frans van Schooten, Algebra của Wallis và các công trình của François Viète.

Ngay sau khi nhận bằng tốt nghiệp, năm 1630, ông phải trở về nhà 2 năm vì trường đóng cửa do bệnh dịch hạch lan truyền. Hai năm này chứng kiến một loạt các phát triển quan trọng của Newton với phương pháp tính vi phân và tích phân hoàn toàn mới, thống nhất và đơn giản hoá nhiều phương pháp tính khác nhau thời bấy giờ để giải quyết những bài toán có vẻ không liên quan trực tiếp đến nhau như tìm diện tích, tìm tiếp tuyến, độ dài đường cong và cực trị của hàm. Tài năng toán học của ông nhanh chóng được hiệu trưởng của Cambridge nhận ra khi trường mở cửa trở lại. Ông được nhận làm giảng viên của trường năm 1670, sau khi hoàn thành thạc sĩ, và bắt đầu nghiên cứu và giảng về quang học. Ông lần đầu chứng minh ánh sáng trắng thực ra được tạo thành bởi nhiều màu sắc, và đưa ra cải tiến cho kính thiên văn sử dụng gương thay thấu kính để hạn chế sự nhoè ảnh do tán sắc ánh sáng qua thuỷ tinh.

📷Isaac Newton ở tuổi già năm 1712, chân dung của Sir James Thornhill

Newton được bầu vào Hội Khoa học Hoàng gia Anh năm 1672 và bắt đầu vấp phải các phản bác từ Huygens và Hooke về lý thuyết hạt ánh sáng của ông. Lý thuyết về màu sắc ánh sáng của ông cũng bị một tác giả phản bác và cuộc tranh cãi đã dẫn đến suy sụp tinh thần cho Newton vào năm 1678. Năm 1679 Newton và Hooke tham gia vào một cuộc tranh luận mới về quỹ đạo của thiên thể trong trọng trường. Năm 1684, Halley thuyết phục được Newton xuất bản các tính toán sau cuộc tranh luận này trong quyển Philosophiae Naturalis Principia Mathematica. Quyển sách đã mang lại cho Newton tiếng tăm vượt ra ngoài nước Anh, đến châu Âu.

Năm 1685, chính trị nước Anh thay đổi dưới sự trị vì của James II, và trường Cambridge phải tuân thủ những điều luật phi lý như buộc phải cấp bằng cho giáo chủ không thông qua thi cử. Newton kịch liệt phản đối những can thiệp này và sau khi James bị William III đánh bại, Newton được bầu vào Nghị viện Anh nhờ những đấu tranh chính trị của ông.

Năm 1693, sau nhiều năm làm thí nghiệm hoá học thất bại và sức khoẻ suy sụp nghiêm trọng, Newton từ bỏ khoa học, rời Cambridge để về nhận chức trong chính quyền tại Luân Đôn. Newton tích cực tham gia hoạt động chính trị và trở nên giàu có nhờ bổng lộc nhà nước. Năm 1703 Newton được bầu làm chủ tịch Hội Khoa học Hoàng gia Anh và giữ chức vụ đó trong suốt phần còn lại của cuộc đời ông. Ông được Nữ hoàng phong bá tước năm 1705. việc ai phát minh ra vi phân và tích phân, Newton và Lepnic không bao giờ tranh luận cả, nhưng các người hâm mộ lại tranh cãi quyết liệt khiến hai nhà khoa học vĩ đại này cảm thấy xấu hổ. Ông mất ngày 31 tháng 3 năm 1727 tại Luân Đôn.

Nghiên cứu khoa học

Quang học

📷Quyển Opticks của Newton📷Minh họa hiện tượng Tán sắc ánh sáng trắng thành nhiều màu khác nhau qua lăng kính, được phát hiện bởi Newton

Từ năm 1670 đến 1672, Newton diễn thuyết về quang học. Trong khoảng thời gian này ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu, và một thấu kính hay một lăng kính sẽ hội tụ các dãy màu thành ánh sáng trắng.

Newton còn cho thấy rằng ánh sáng màu không thay đổi tính chất, bằng việc phân tích các tia màu và chiếu vào các vật khác nhau. Newton chú ý rằng dù là gì đi nữa, phản xạ, tán xạ hay truyền qua, màu sắc vẫn giữ nguyên. Vì thế màu mà ta quan sát là kết quả vật tương tác với các ánh sáng đã có sẵn màu sắc, không phải là kết quả của vật tạo ra màu.

📷Bản sao kính thiên văn phản xạ thứ hai của Newton mà ông đã trình bày cho Hội khoa học Hoàng gia vào năm 1672

Nhờ vào những khám phá trên, Newton nhận ra nguyên nhân gây ra sự sai lệch màu của hình ảnh trên kính viễn vọng khúc xạ thời đó. Ông đã áp dụng nguyên lý của James Gregory để tạo ra kính viễn vọng phản xạ đầu tiên, khắc phục được nhiều nhược điểm về ảnh của kính viễn vọng khúc xạ đồng thời giảm đi đáng kể chiều dài của kính viễn vọng.

Quả táo Newton

📷Bài này là một bản dịch thô từ ngôn ngữ khác. Đây có thể là kết quả của máy tính hoặc của người chưa thông thạo dịch thuật. Xin hãy giúp tăng chất lượng bản dịch.

Sau khi Newton công bố định luật vạn vật hấp dẫn, giới khoa học lưu truyền câu chuyện quả táo rơi trúng đầu Newton liệu có mối liên hệ giữa khối lượng và khoảng cách của vật thể trong nhà vật lý vĩ đại này. Thế nhưng, nhiều ý kiến cho rằng đó chỉ là câu chuyện thêu dệt, chỉ là một huyền thoại và rằng ông đã không xây dựng lý thuyết về lực hấp dẫn ở bất cứ thời điểm duy nhất nào.

Tuy nhiên, với bản thảo viết tay Memoirs of Life Sir Isaac Newton có từ năm 1752, nhà khoa học William Stukeley (một người quen của Newton) kể lại chi tiết về khoảng khắc khi Newton tìm ra thuyết vạn vật hấp dẫn.

Bài viết của Stukeley kể về những suy nghĩ của Newton về thuyết lực hấp dẫn khi hai người ngồi dưới bóng râm cây táo trong vườn của nhà khoa học, tại Kensington vào ngày 15 tháng 4 năm 1726: [7]

Chúng tôi đã đi vào một khu vườn, và uống trà dưới bóng mát của vườn táo; chỉ có ông, và tôi. Ông nói với tôi, chính ở vị trí này, vào thuở trước khái niệm về lực hấp dẫn đã đến trong tâm trí.Thời điểm đó ông đang ngồi chiêm nghiệm và một quả táo rơi xuống. Ông đã nghĩ tại sao quả táo lại rơi thẳng xuống đất?

Quả táo chín rồi, tại sao lại rơi xuống đất? Tại vì gió thổi chăng? Không phải, khoảng không rộng mênh mông, tại sao lại phải rơi xuống mà không bay lên trời? Như vậy trái đất có cái gì hút nó sao? Mọi vật trên trái đất đều có sức nặng, hòn đã ném đi rốt cuộc lại rơi xuống đất, trọng lượng của mọi vật có phải là kết quả của lực hút trái đất không?

Tại sao nó không đi ngang, hoặc đi lên ? Nhưng lại liên tục đến trung tâm trái đất ? Chắc chắn, không lý nào khác rằng trái đất đã hút nó. Phải có một sức mạnh hút kéo vật chất & tổng sức mạnh hút kéo trong vấn đề trái đất phải được ở trung tâm đất, không phải trong bất kỳ bên của trái đất do đó đó quả táo này có rơi vuông góc, hay hướng về trung tâm nếu có vấn đề do đó hút lấy vật chất.. nó phải được cân đối với lượng của nó do đó táo rút ra trái đất., cũng như trái đất thu hút sự táo.

John Conduitt, trợ lý của Newton tại Royal Mint và chồng của cô cháu gái của Newton, cũng mô tả các sự kiện khi ông đã viết về cuộc sống của Newton:

Vào năm 1666, ông nghỉ hưu từ Cambridge với mẹ ông ở Lincolnshire. Trong khi đang lang thang trầm tư trong vườn, thì đến hiện ý tưởng rằng sức mạnh của lực hấp dẫn (đã mang quả táo từ trên cây rơi xuống đất) không bị giới hạn trong một khoảng cách nhất định từ trái đất, nhưng sức mạnh này phải trải rộng ra xa hơn là thường nghĩ. Tại sao không cao như mặt trăng nói ông đến mình, và nếu như vậy, mà phải ảnh hưởng đến chuyển động của mặt trăng và có lẽ giữ lại trong quỹ đạo của nó, từ đó ông lao vào tính toán những gì sẽ là kết quả của giả thiết đó.

Trong một việc tương tự, Voltaire đã viết trong cuốn tiểu luận về Epic Thơ (1727), "Sir Isaac Newton đi bộ trong khu vườn của mình, có những suy nghĩ đầu tiên của hệ thống hấp dẫn của ông, khi thấy một quả táo rơi xuống từ một cây."

Newton đã phải vật lộn trong cuối thập kỷ 1660 với ý tưởng rằng lực hấp dẫn tương tác trên mặt đất, trong một tỷ lệ nghịch với bình phương khoảng cách; Tuy nhiên ông đã phải mất hai thập kỷ để phát triển các lý thuyết đầy đủ. Câu hỏi đặt ra không phải là liệu trọng lực tồn tại, nhưng liệu nó có mở rộng để cách xa Trái đất mà nó còn có thể là lực giữ mặt trăng trên quỹ đạo của nó. Newton đã chỉ ra rằng nếu lực tương tác giảm tỉ lệ nghịch với khoảng cách, người ta có thể tính toán chu kỳ quỹ đạo của Mặt trăng một cách thống nhất. Ông đoán một loại lực chung là nguyên do của mọi chuyển động quỹ đạo, và do đó đặt tên nó là "lực vạn vật hấp dẫn".

Sau này Newton nêu ra: Mọi vật trên trái đất đều chịu sức hút của trái đất, mặt trăng cũng chịu sức hút của trái đất, đồng thời trái đất cũng chịu sức hút của mặt trăng; Trái đất chịu sức hút của mặt trời, mặt trời đồng thời cũng chịu sức hút của trái đất. Nói một cách khác là vạn vật trong vũ trụ đều có lực hấp dẫn lẫn nhau, vì có loại lực hấp dẫn này mà mặt trăng mới quay quanh trái đất, trái đất mới quay quanh mặt trời.

Tác phẩm

Xuất bản khi sinh thời

De analysi per aequationes numero terminorum infinitas (1669, published 1711)

Method of Fluxions (1671)

Of Natures Obvious Laws & Processes in Vegetation (unpublished, c. 1671–75)[8]

De motu corporum in gyrum (1684)

Philosophiæ Naturalis Principia Mathematica (1687)

Opticks (1704)

Reports as Master of the Mint (1701–25)

Arithmetica Universalis (1707)

Xuất bản sau khi qua đời

The System of the World (1728)

Optical Lectures (1728)

The Chronology of Ancient Kingdoms Amended (1728)

De mundi systemate (1728)

Observations on Daniel and The Apocalypse of St. John (1733)

Newton, Isaac (1991). Robinson, Arthur B., biên tập. Observations upon the Prophecies of Daniel, and the Apocalypse of St. John. Cave Junction, Oregon: Oregon Institute of Science and Medicine. ISBN 0-942487-02-8. (A facsimile edition of the 1733 work.)

An Historical Account of Two Notable Corruptions of Scripture (1754)

0