K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Đề bài chưa cho điều kiện kìa

Cộng 1 vào mỗi phân thức

Sau đó dùng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với a;b>0

10 tháng 1 2020

Đặt \(\hept{\begin{cases}b+c+d=x>0\\a+c+d=y>0\\a+b+d=z>0\end{cases}}\)và \(a+b+c=t>0\)

\(\Rightarrow\hept{\begin{cases}a=\frac{y+z+t-2x}{3}\\b=\frac{x+z+t-2y}{3}\\c=\frac{x+y+t-2z}{3}\end{cases}}\)và \(d=\frac{x+y+z-2t}{3}\)

Từ đó ta có:\(Q=\frac{y+z+t-2x}{3x}+\frac{x+z+t-2y}{3y}+\frac{x+y+t-2z}{3z}+\frac{x+y+z-2t}{3t}\)

\(=\frac{y}{3x}+\frac{z}{3x}+\frac{t}{3x}-\frac{2}{3}+\frac{x}{3y}+\frac{z}{3y}+\frac{t}{3y}-\frac{2}{3}+\frac{x}{3z}+\frac{y}{3z}+\frac{t}{3z}-\frac{2}{3}+\frac{x}{3t}+\frac{y}{3t}+\frac{z}{3t}-\frac{2}{3}\)

\(=\left(\frac{y}{3x}+\frac{x}{3y}\right)+\left(\frac{z}{3x}+\frac{x}{3z}\right)+\left(\frac{t}{3x}+\frac{x}{3t}\right)+\left(\frac{z}{3y}+\frac{y}{3z}\right)+\left(\frac{t}{3y}+\frac{y}{3t}\right)+\left(\frac{t}{3z}+\frac{z}{3t}\right)-\frac{8}{3}\)

Áp dụng BĐT AM-GM ta được:

\(\frac{y}{3x}+\frac{x}{3y}\ge2\sqrt{\frac{y}{3x}.\frac{x}{3y}}=\frac{2}{3}\)

CMTT \(\Rightarrow Q\ge\frac{4}{3}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c=d\)

3 tháng 1 2016

Ta có:

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\)  \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì   \(a+b+c+d\ne0\)  nên   \(a=b=c=d\)

Do đó:   \(M=4\)

3 tháng 1 2016

M =4 nha . TICK MÌNH ĐI !!!!!!!!!!!!!!!!!!!!!!

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

24 tháng 3 2020

Ta có: \(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(1\right)\)

Mặt khác: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)

Tương tự: \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\)

\(\frac{d}{a+b+c+d}< \frac{d}{b+d+a}< \frac{d+c}{a+b+c+d}\left(6\right)\)

Cộng vế với vế (3);(4);(5);(6) ta có:

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\left(đpcm\right)\)

24 tháng 3 2020

Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b

A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d

A > a+b+c+d/a+b+c+d = 1 (1)

Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:

A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d

A < 2.(a+b+c+d)/a+b+c+d

A < 2

Từ (1) và (2) => đpcm

nguồn:soyeon_Tiểubàng giải