K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Điều kiện bạn tự làm

\(x+y+z+11=2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-4\sqrt{y-1}+4\right)+\left(z-2-6\sqrt{z-2}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2+\left(\sqrt{z-2}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=5\\z=11\end{cases}}\)

3 tháng 2 2020

Ta có: \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{z\left[4\left(4-y-z\right)+yz\right]}\)

\(=\sqrt{x\left[4\left(x+\sqrt{xyz}\right)+yz\right]}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=2x+\sqrt{xyz}\)

Tương tự ta có: \(\sqrt{y\left(4-z\right)\left(4-z\right)}=2y+\sqrt{xyz}\)

Và: \(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Từ trên:

\(\Rightarrow T=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}\)

\(=2\left(x+y+z+\sqrt{xyz}\right)\)

\(=8\)

8 tháng 4 2021

Áp dụng bđt bunhiacopxki, ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(1+16\right)\ge\left(x+\frac{4}{x}\right)^2\) => \(x^2+\frac{1}{x^2}\ge\frac{\left(x+\frac{4}{x}\right)^2}{17}\)

=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{x+\frac{4}{x}}{\sqrt{17}}=\frac{x}{\sqrt{17}}+\frac{4}{x\sqrt{17}}\)

CMTT: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{y}{\sqrt{17}}+\frac{4}{\sqrt{17}y}\)

\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{z}{\sqrt{17}}+\frac{4}{\sqrt{17}z}\)

=> A \(\ge\frac{x+y+z}{\sqrt{17}}+\frac{4}{\sqrt{17}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x+y+z}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}\)(bđt: 1/a + 1/b + 1/c > = 9/(a+b+c)

=> A \(\ge\frac{16\left(x+y+z\right)}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}-\frac{15\left(x+y+z\right)}{\sqrt{17}}\)

\(\ge2\sqrt{\frac{16\left(x+y+z\right)}{\sqrt{17}}\cdot\frac{36}{\sqrt{17}\left(x+y+z\right)}}-\frac{15\cdot\frac{3}{2}}{\sqrt{17}}\)(Bđt cosi + bđt: x + y + z < = 3/2)

\(\ge\frac{48}{\sqrt{17}}-\frac{45}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra <=> x = y= z = 1/2

Vậy MinA = \(\frac{3\sqrt{17}}{2}\) <=> x = y = z = 1/2

14 tháng 6 2019

bài lớp mấy mà khó dữ

Ta có : \(xy+yz+zx=1\)

\(\Rightarrow\hept{\begin{cases}1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\\1+y^2=xy+yz+zx+y^2=\left(y+x\right)\left(y+z\right)\\1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\end{cases}}\)

Do đó :

\(\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\sqrt{\left(y+z\right)^2}\)\(=y+z\)

\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\left(y+z\right)\)

Hoàn toàn tương tự :

\(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\left(z+x\right)\)

\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\left(x+y\right)\)

Do đó :

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)

\(=2\left(xy+yz+zx\right)=2\)

17 tháng 5 2018

a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)

b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)

\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)

21 tháng 5 2018

Dễ dàng chứng minh được \(y+z\le\sqrt{\frac{\left(y^2+z^2\right)}{2}}\Rightarrow y+z\le\frac{b}{\sqrt{2}}\)

đặt \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{z^2+x^2}=c\Rightarrow\)\(\hept{\begin{cases}a+b+c=6\\a,b,c>0\end{cases}}\)

\(P\ge\frac{a^2+c^2-b^2}{2\sqrt{2}b}+\frac{a^2+b^2-c^2}{2\sqrt{2}c}+\frac{c^2+b^2-a^2}{2\sqrt{2}a}\)\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{b^2}{a}-\left(a+b+c\right)\right)\)

\(\ge\frac{1}{2\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\left(a+b+c\right)\right)=\frac{1}{2\sqrt{2}}\left(2\left(a+b+c\right)-\left(a+b+c\right)\right)\)

\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2\sqrt{2}}\cdot6=\frac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\)

22 tháng 5 2018

\(y+z\le\frac{\sqrt{z^2+x^2}}{\sqrt{2}}\Leftrightarrow\sqrt{2}+\sqrt{2}\le\sqrt{2}.\)  " thay căn 2 "

yim yim sao t thay số vào thì cái bdt của m lại sai ???? 

bài m sai rồi hahah

11 tháng 9 2017

xét bình phương biểu thức trong dấu giá tri tuyetj đối

Bình phường hai vế lên ta có :

\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}^2=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|^2\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|^2\)

Xét: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

mà \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z+x+y}{xyz}=0\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Rightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)

31 tháng 12 2020

Ta có: \(x+y+z=xyz\Leftrightarrow x=\frac{x+y+z}{yz}\Leftrightarrow x^2=\frac{x^2+xy+xz}{yz}\Leftrightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

Tương tự, ta được: \(\frac{1}{\sqrt{y^2+1}}=\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}\)\(\frac{1}{\sqrt{z^2+1}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

Cộng theo từng vế ba đẳng thức trên, ta được: \(P=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)\(\le\frac{\frac{y}{x+y}+\frac{z}{z+x}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}+\frac{y}{y+z}}{2}=\frac{3}{2}\)(BĐT Cô-si)

Đẳng thức xảy ra khi x = y = z = \(\sqrt{3}\)

28 tháng 10 2021

taị sao lại là căn 3 vậy ạ