K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

@Akai Haruma

NV
28 tháng 3 2019

Do \(\left|x\right|\ge2;\left|y\right|\ge2\Rightarrow xy\ne0\)

Ta luôn có \(\left\{{}\begin{matrix}\frac{1}{x}\le\frac{1}{\left|x\right|}\le\frac{1}{2}\\\frac{1}{y}\le\frac{1}{\left|y\right|}\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{x}+\frac{1}{y}\le\frac{1}{2}+\frac{1}{2}=1\)

\(\frac{xy}{x+y}=\frac{2003}{2004}\Leftrightarrow\frac{x+y}{xy}=\frac{2004}{2003}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{2004}{2003}\)

Ta có \(\frac{2004}{2003}>1\)\(\frac{1}{x}+\frac{1}{y}\le1\Rightarrow VT< VP\Rightarrow\) phương trình vô nghiệm

22 tháng 4 2018

\(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(xy+1\right)+\left(\frac{1+xy}{x+y}\right)^2\ge0\)

\(\Leftrightarrow\left(x+y\right)^2-\frac{2\left(x+y\right)\left(xy+1\right)}{\left(x+y\right)}+\left(\frac{1+xy}{x+y}\right)^2\ge0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2\ge0\) (đúng)

Vậy ...

14 tháng 3 2018

Theo Cauche ta có:

\(\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\left(x+y\right).\frac{1+xy}{x+y}=2\left(1+xy\right)=2+2xy\)

<=> \(x^2+y^2+2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy\)

<=> \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy-2xy=2\)=> ĐPCM

NV
29 tháng 4 2020

\(VT=x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2-2xy\)

\(VT\ge2\sqrt{\frac{\left(x+y\right)^2\left(1+xy\right)^2}{\left(x+y\right)^2}}-2xy=2\left|1+xy\right|-2xy\)

\(VT\ge2\left(1+xy\right)-2xy=2\) (đpcm)

Dấu "=" xảy ra khi \(\left(x+y\right)^2=1+xy\)

14 tháng 1 2017

a)VP lẻ => VT lẻ =>x2-y2=2k+1 (k\(\in\)Z) (số lẻ)

\(\Rightarrow10y+9=\left(2k+1\right)^2\Rightarrow y=\frac{2\left(k+2\right)\left(k-1\right)}{5}\in Z^+\)

\(\Rightarrow\orbr{\begin{cases}\left(k+2\right)⋮5\Rightarrow k=5t-2\Rightarrow y=2t\left(5t-3\right)\left(1\right)\\\left(k-1\right)⋮5\Rightarrow k=5t+1\Rightarrow y=2t\left(5t+3\right)\left(2\right)\end{cases}}\left(t\in Z^+\right)\)

  • Xét \(\left(1\right)\Rightarrow x^2=\left(10t^2-6t\right)^2+10t-3\)

Mà \(\hept{\begin{cases}\left(10t^2-6t\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t+1\right)^2\left(\text{khi}\text{ t }\ge1\right)\\\left(10t^2-6t-1\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t\right)^2\left(\text{khi t}\le-1\right)\\\left(10t^2-6t\right)^2+10t-3=-3< 0\left(\text{khi t}=0\right)\end{cases}}\)

Suy ra pt vô nghiệm

  • Xét (2)\(\Rightarrow x^2=\left(10t^2+6t\right)^2+10t+3\)

Mà \(\left(10t^2+6t\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t+1\right)^2\left(\text{khi t}\ge1\right)\) (*)

\(\left(10t^2+6t-1\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t\right)^2\left(\text{khi t}< -1\right)\)(*)

\(\left(10t^2+6t\right)^2+10t+3=3^2\left(\text{khi t}=-1\right)\)(*)

\(1^2< \left(10t^2+6t\right)^2+10t+3=3< 2^2\left(\text{khi t}=0\right)\)(*)

Suy ra \(t=-1;y=4;x=\pm3\) (thỏa mãn)

Vậy....

P/s:Ngoặc nhọn 4 dòng có dấu (*) vào

14 tháng 1 2017

Xin lỗi bạn mình chưa học lớp 8

Trông đề bài khó quá

Mình nghiệp dư lắm

2 tháng 3 2018

câu 1,

a, 2(m-1)x +3 = 2m -5

<=> 2x (m-1) - 2m +8 = 0  (1)

Để PT (1) là phương trình bậc nhất 1 ẩn thì:  m - 1 \(\ne\)0 <=> m\(\ne\)1

b, giải PT: 2x +5 = 3(x+2)-1

<=> 2x + 5 -3x -6 + 1 =0

<=> -x = 0

<=>  x = 0

Thay vào (1) ta được: -2m + 8 =0

<=> -2m = -8

<=> m = 4 (t/m)

vậy m = 4 thì pt trên tương đương.................

11 tháng 3 2018

thằng ngu lê anh tú ko biết gì thì im vào

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)\(\Rightarrow x^2+y^2=S^2-2P\)

Ta cần chứng minh \(S^2-2P+\left(\frac{P+1}{S}\right)^2\ge2\)

\(\Leftrightarrow S^2-2\left(P+1\right)+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow S^2-\frac{2S\left(P+1\right)}{S}+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow\left(S-\frac{P+1}{S}\right)^2\ge0\) *luôn đúng*

10 tháng 3 2018

Đề sai. a=0;b=0,1 ko đúng, sửa lại đề đi bn

18 tháng 6 2019

a/  \(\left(\frac{x+y}{2}\right)^2\ge xy\)

Ta có \(\left(\frac{x+y}{2}\right)^2-xy\)

\(=\frac{\left(x+y\right)^2}{2^2}-xy\)

\(=\frac{x^2+2xy+y^2}{4}-\frac{4xy}{4}\)

\(=\frac{x^2+2xy+y^2-4xy}{4}\)

\(=\frac{x^2-2xy+y^2}{4}=\frac{\left(x-y\right)^2}{4}\)

mak ta lại có : 

 \(\left(x-y\right)^2\ge0\Rightarrow\frac{\left(x-y\right)^2}{4}\ge0\)

\(\Rightarrow\left(\frac{x+y}{2}\right)^2-xy\ge0\)\(\Rightarrow\left(\frac{x+y}{2}\right)^2\ge xy\)

18 tháng 6 2019

b/ \(x^2\ge2y\left(x-y\right)\)

ta có \(x^2-2y\left(x-y\right)\)

\(=x^2-2xy+2y^2\)

\(=x^2-2xy+y^2+y^2\)

\(=\left(x^2-2xy+y^2\right)+y^2\)

\(=\left(x-y\right)^2+y^2\)

Ta lại có \(\orbr{\begin{cases}\left(x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+y^2\ge0\)

\(\Rightarrow x^2-2y\left(x-y\right)\ge0\)

\(\Rightarrow x^2\ge2y\left(x-y\right)\)

c/ \(4a^4-4a^3+a^2\ge0\)

ta có : \(4a^4-4a^3+a^3\)

\(=a^2\left(4a^2-4a+1\right)\)

\(=a^2\left(2a-1\right)^2\)

ta có \(\orbr{\begin{cases}a^2\ge0\\\left(2a-1\right)^2\ge0\end{cases}}\)

\(\Rightarrow a^2\left(2a-1\right)^2\ge0\)

\(\Rightarrow4a^4-4a^3+a^3\ge0\)

18 tháng 4 2019

Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{y}+\frac{y}{z}+\frac{x}{z}\right)\left(1+\frac{z}{x}\right)=2+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+\frac{y}{x}+\frac{x}{z}\)

\(=2+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\)

Ta chứng minh bất đẳng thức :

\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Vì x, y, z đóng vai trò như nhau nên ta chứng minh bất đẳng thức phụ:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{x+y+z}{\sqrt[3]{xyz}}\)

Xét:

 \(3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\left(\frac{2x}{y}+\frac{y}{z}\right)+\left(\frac{2y}{z}+\frac{z}{x}\right)+\left(\frac{2z}{x}+\frac{x}{y}\right)\)

Áp dụng BĐT AM-GM ta có:

\(\frac{2x}{y}+\frac{y}{z}=\frac{x}{y}+\frac{x}{y}+\frac{y}{z}\ge3\sqrt[3]{\frac{x.x.y}{y.y.z}}=3\sqrt[3]{\frac{x.x.x}{xyz}}=3\frac{x}{\sqrt[3]{xyz}}\)

Tương tự như thế ta có:

\(3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\ge3.\frac{x}{\sqrt[3]{xyz}}+3\frac{y}{\sqrt[3]{xyz}}+3\frac{z}{\sqrt[3]{xyz}}\)

\(\Rightarrow\)\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{x+y+z}{\sqrt[3]{xyz}}\)

Như vậy:

\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

=> \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Dấu "=" khi x=y=z

18 tháng 4 2019

Câu hỏi của Incursion_03 - Toán lớp 9 - Học toán với OnlineMath