K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

\(\Leftrightarrow abc+xyz+3\sqrt[3]{\left(abc\right)^2.xyz}+3\sqrt[3]{abc.\left(xyz\right)^2}\le abc+xyz+abz+bcx+cay+cxy+ayz+bzx\)

\(\Leftrightarrow3\sqrt[3]{\left(abc\right)^2.xyz}+3\sqrt[3]{abc.\left(xyz\right)^2}\le\left(abz+bcx+cay\right)+\left(cxy+ayz+bzx\right)\)

Áp dụng bất đẳng thức Côsi ta có ngay đpcm.

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

11 tháng 7 2017

\(BDT\Leftrightarrow\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)

Áp dụng BĐT AM-GM ta có: 

\(\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\le\frac{\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}}{3}\)

\(\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\le\frac{\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}}{3}\)

\(\Rightarrow VT\le\frac{\frac{x+a}{x+a}+\frac{b+y}{b+y}+\frac{c+z}{c+z}}{3}=1\)

Xảy ra khi a=b=c và x=y=z

11 tháng 7 2017

Áp dụng BĐT AM-Gm:

\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\ge3\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\ge3\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

Cộng 2 BĐT trên theo vế:

\(3\ge3.\frac{\sqrt[3]{abc}+\sqrt[3]{xyz}}{\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\Leftrightarrow\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\ge\sqrt[3]{abc}+\sqrt[3]{xyz}\)(đpcm)

Dấu = xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\geq 3\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\)

\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\geq 3\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\)

Cộng theo vế:

\(\Rightarrow \frac{x+a}{x+a}+\frac{y+b}{y+b}+\frac{c+z}{c+z}\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)

\(\Rightarrow 3\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)

\(\Rightarrow \sqrt[3]{(a+x)(b+y)(c+z)}\geq \sqrt[3]{abc}+\sqrt[3]{xyz}\)

Ta có đpcm

b) Áp dụng công thức trên, với \(a=\sqrt[3]{3}; b=\sqrt[3]{3^2}+1; c=1; x=\sqrt[3]{3}; y=\sqrt[3]{3^2}-1; z=1\) suy ra:

\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\leq \sqrt[3]{(\sqrt[3]{3}+\sqrt[3]{3})(\sqrt[3]{3^2}+1+\sqrt[3]{3^2}-1)(1+1)}=2\sqrt[3]{3}\)

Ta có đpcm.

NV
24 tháng 1 2022

\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)

\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)

\(=x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)

\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)

1. a) \(\left\{{}\begin{matrix}x,y,z0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

NV
26 tháng 7 2021

a.

\(\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế:

\(VT\le\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
26 tháng 7 2021

b.

\(VP=\dfrac{4\left(a+b+c\right)}{2\sqrt{4a\left(a+3b\right)}+2\sqrt{4b\left(b+3c\right)}+2\sqrt{4c\left(c+3a\right)}}\)

\(VP\ge\dfrac{4\left(a+b+c\right)}{4a+a+3b+4b+b+3c+4c+c+3a}\)

\(VP\ge\dfrac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)