K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2021

\(P=\dfrac{a^3}{b^2+ab+bc+ca}+\dfrac{b^3}{c^2+ab+bc+ca}+\dfrac{c^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}\)

Ta có:

\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge\dfrac{3a}{4}\)

\(\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3b}{4}\)

\(\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3c}{4}\)

Cộng vế:

\(P+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow P\ge\dfrac{1}{4}\left(a+b+c\right)\ge\dfrac{1}{4}.\sqrt{3\left(ab+bc+ca\right)}=\dfrac{\sqrt{3}}{4}\)

16 tháng 9 2021

giúp em giải dấu "=" với ạ :<

NV
6 tháng 6 2021

Bạn tham khảo:

Bài ni hay lắm mn Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\)       Tìm giá trị lớn nhất của biểu thức \(B=\lef... - Hoc24

6 tháng 6 2021

thầy người miền Trung ạ

1 tháng 4 2021

Với cả 3 phần thì dấu "=" xảy ra tại a=b=c=1.

a) \(\dfrac{a}{1+b^2}=\dfrac{a\left(1+b^2\right)}{1+b^2}-\dfrac{ab^2}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)

(Cosi) \(\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)

Tương tự : \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2};\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\)

\(\Rightarrow P\ge\left(a+b+c\right)-\dfrac{ab+bc+ca}{2}\ge\left(CS\right)\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{6}=3-\dfrac{3^2}{6}=\dfrac{3}{2}\)

b) \(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge\left(CS\right)1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

Tương tự : \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)

\(\Rightarrow P\ge3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\)

c)\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\left(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\right)+\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)

1 tháng 5 2017

Với mọi x, y > 0 ta luôn có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) 

Đẳng thức xảy ra   \(\Leftrightarrow\)  x = y

Ta có:   \(\frac{2}{2a+b+c}=\frac{1}{2}.\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(=\frac{1}{8}\left(\frac{4}{a+b}+\frac{4}{a+c}\right)\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}\right)=\frac{1}{8}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (1)

Tương tự \(\frac{2}{2b+c+a}\le\frac{1}{8}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) (2)   và    \(\frac{2}{2c+a+b}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)  (3)

Cộng (1), (2) và (3) ta được: \(A\le\frac{1}{8}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\)

Vậy \(A_{max}=\frac{3}{2}\) \(\Leftrightarrow\) \(a=b=c=1\)