K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

Toán lớp 9

12 tháng 10 2020

\(A=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{x^2y^2-x^2-y^2+1}{x^2y^2}=\frac{x^2y^2-x^2-y^2+\left(x+y\right)^2}{x^2y^2}=\frac{x^2y^2+2xy}{x^2y^2}\)\(=1+\frac{2}{xy}\)

Ta có BĐT: \(\left(x+y\right)^2\ge4xy;\forall x,y>0\)

Đẳng thức xảy ra khi và chỉ khi x=y.

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)

Có: \(A=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=1+8=9\)

Vậy GTNN của A=9 khi x=y=1/2

Ta có:

\(\left(x-\frac{1}{y}\right)^2\ge0\Rightarrow x^2+\frac{1}{y^2}\ge2.\frac{x}{y}\)

\(\left(y-\frac{1}{x}\right)^2\ge0\Rightarrow y^2+\frac{1}{x^2}\ge2.\frac{y}{x}\)

Mặt khác , vì \(x>0;y>0\)nên suy ra

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\ge2.\frac{x}{y}.2.\frac{y}{x}=4\)

Vậy GTNN của M là 4, khi xy=1

P/s tham khảo nha

9 tháng 3 2016

Theo bất đẳng thức Cô-Si, ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) Do vậy áp dụng bất đẳng thức Cô-Si 

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16\cdot\frac{1}{4}}=\frac{17}{4}.\)

a. Ta có \(M=\left(xy\right)^2+\frac{1}{\left(xy\right)^2}+2=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{17}{4}\right)^2=\frac{289}{16}.\)  Dấu bằng xảy ra khi \(x=y=\frac{1}{2}.\) Vây giá trị bé nhất của M là \(\frac{289}{16}.\)
b.  Theo bất đẳng thức Cô-Si 

\(N\ge2\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=2\left(xy+\frac{1}{xy}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\cdot\frac{17}{4}+4\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=\frac{25}{2}.\)

Dấu bằng xảy ra khi và chỉ \(x=y=\frac{1}{2}.\) 

Áp dụng bđt AM-GM ta có

\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)

  Ta có   \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng bđt AM-GM ta có

\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)

18 tháng 2 2020

Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ

\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)

\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)

\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)

\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

6 tháng 8 2020

Bài này thì AM-GM thôi 

\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)

Sử dụng BĐT AM-GM cho 3 số không âm ta có :

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)

\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :

\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)

\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)

Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)

8 tháng 2 2019

1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)

mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)

=>\(x+y+z=< 3\)

ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy  schwarz)