K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)

29 tháng 1 2019

Mẫu bài này khó khử ~v

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{a^3\left(b+c\right)}{4}\ge2\sqrt{\frac{1}{a^3\left(b+c\right)}.\frac{a^3\left(b+c\right)}{4}}=2.\frac{1}{2}=1\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge3\) (*)

Ta sẽ c/m: \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\) (**)

Thật vậy,áp dụng BĐT Cô si,ta có: \(VT_{\left(^∗^∗\right)}\ge2a^2.a\sqrt{bc}+2b^2.b\sqrt{ac}+2c^2.c\sqrt{ab}\) 

\(=2a^2\sqrt{abc.a}+2b^2\sqrt{abc.b}+2c^2\sqrt{abc.c}\)

\(=2a^2\sqrt{a}+2b^2\sqrt{b}+2b^2\sqrt{c}\) (***)

Đặt \(\sqrt{a}=t;\sqrt{b}=u;\sqrt{c}=v\).và \(t.u.v=1\)

(***) trở thành: \(2t^5+2u^5+2v^5=2\left(t^5+u^5+v^5\right)\)

Ta có: \(t^5+u^5+v^5+1+1\ge5\sqrt[5]{t^5u^5v^5.1.1}=5\)

Suy ra \(t^5+u^5+v^5\ge5-2=3\)

Suy ra \(2\left(t^5+u^5+v^5\right)\ge2.3=6\) (****)

Kết hợp (**) ; (***) và (****) suy ra \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\)

Thay vào (1) suy ra \(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge VT+\frac{6}{4}\ge3\)

Suy ra \(VT\ge\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bài dài quá,có gì sai sót mong bạn thông cảm.Vì khi bài dài,mình làm có thể sẽ bị ngược dấu. :v

26 tháng 5 2019

Chết mọe,hình như em làm sai rồi thì phải :(,Sr ạ!

28 tháng 3 2020

Ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)

Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(

29 tháng 3 2020

BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)

<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)

<=> \(ab+bc+ac+a+b+c\ge6\)(1)

(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)

=> BĐT được CM

Dấu bằng xảy ra khi \(a=b=c=1\)

28 tháng 3 2020

Biến đổi tương đương ta có : 

\(\frac{a}{\left(a+1\right).\left(b+1\right)}+\frac{b}{\left(b+1\right).\left(c+1\right)}+\frac{c}{\left(c+1\right).\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4.a.\left(c+1\right)+4.b.\left(a+1\right)+4.c.\left(b+1\right)\ge3.\left(a+1\right).\left(b+1\right).\left(c+1\right)\)

\(\Leftrightarrow4.\left(a+b+c\right)+4.\left(ab+bc+ac\right)\ge3.a.b.c+3.\left(a+b+c\right)+3.\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm bất đẳng thức Cauchy 3 số ta có : 

a+b+c \(\ge\)3.\(\sqrt[3]{abc}\)và ab + bc + ca \(\ge3.\sqrt[3]{a^2b^2c^2}=3\)

Vậy bất đẳng thức đã được chứng minh . Dấu bằng xảy ra khi và chỉ khi a= b= c =1

31 tháng 3 2020

Mình áp dụng BĐT AM-GM  đến dòng 

\(\Leftrightarrow ab+bc+ca+a+b\ge6\left(1\right)\)

Áp dụng BĐT AM-GM cho 3 số dương ta được

\(ab+bc+ca\ge3\sqrt[2]{\left(abc\right)^2}=3;a+b+c\ge3\sqrt[2]{abc}=3\)

Cộng từng vế  BĐT ta được (1). Do vậy BĐT ban đầu được chứng minh

Dấu "=" xảy ra <=> a=b=c=1

29 tháng 3 2020

Biến đối tương đương ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4a\left(c+1\right)+4b\left(a+1\right)+4c\left(b+1\right)\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\left(a+b+c\right)+4\left(ab+bc+ca\right)\ge3abc+3\left(a+b+c\right)+3\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm BĐT Cauchy 3 số ta có:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{cases}}\)

Vậy BĐT đã được chứng minh. Dấu "=" <=> a=b=c=1

15 tháng 11 2017

ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)

\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\)    (vì abc=1)     (*)

Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\)   (vì abc=1)

=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\)   (**)

Từ (*), (**)=> đpcm

12 tháng 2 2020

Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3

\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

Tương tự rồi cộng lại:

\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1