K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Cần chứng minh 

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có :

p-a = \(\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\)

p-b=\(\frac{a+c-b}{2}\)

p-c =\(\frac{a+b-c}{2}\)

=> VT = 2 \(\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

Xét BDT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(luon-dung\right)\)

Dấu "=" xảy ra khi x=y=1

Khi đó

 \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\). Dấu "=".........

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\). Dấu "="........

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\). Dấu "="........

Cộng vế với Vế , ta suy ra : 

2\(\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\) \(\ge\)2\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi a=b=c 

25 tháng 5 2019

Em thử dùng phép thế Ravi ạ, cách thì em biết rồi,muốn thử test cách này:

Đặt a =x + y; b =y + z; c = z + x (để không cần quan tâm để BĐT tam giác nữa)

Khi đó \(p=x+y+z;p-a=z;p-b=x;p-c=y\)

Ta cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)

Ta có \(2VT=\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}=2VP\Rightarrow VT\ge VP^{\left(đpcm\right)}\)

13 tháng 1 2019

A B C E D b c x b

Giả sử AB=c,BC=a,CA=b; đường phân giác AD có độ dài x. Qua C kẻ đường thẳng song song với AD cắt tia BA tại E.

Dễ thấy: ^ACE = ^AEC (=^BAC/2) => \(\Delta\)ACE cân tại A => AC=AE=b => CE < 2b (BĐT tam giác)

Theo hệ quả ĐL Thales: \(\frac{AD}{CE}=\frac{BA}{BE}\)(Do AD // CE) hay \(\frac{x}{CE}=\frac{c}{b+c}\Rightarrow x=\frac{c.CE}{b+c}\)

Mà BE < 2b nên \(x< \frac{2bc}{b+c}\). Tương tự thì \(y< \frac{2ca}{c+a};z< \frac{2ab}{a+b}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm).

28 tháng 11 2016

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) thì ta được

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)

Cộng các bđt trên theo vế được đpcm.

19 tháng 9 2020

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng vế với vế

=> \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=> \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)( đpcm )

Đẳng thức xảy ra <=> a = b = c

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...