K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

Đặt \(S_n=3^{2n+1}+40n-67\)

Xét \(n=1\Rightarrow S_n=0⋮64\)

Giả sử n đúng với \(n=k\left(k\inℤ^+\right)\)tức là ta có :

\(S_k=3^{2k+1}+40k-67⋮64\). Ta cần chứng minh n đúng với \(n=k+1\).

Tức cần chứng minh \(S_{k+1}=2^{2\left(k+1\right)+1}+40\left(k+1\right)-67⋮64\)

Thật vậy ta có : \(S_{k+1}=2^{2\left(k+1\right)+1}+40\left(k+1\right)-67\)

\(=9\cdot2^{2k+1}+40k-27\)

\(=9\cdot\left(2^{2k+1}+40k-67\right)-320k+576\)

\(=9\cdot S_k-320k+576⋮64\)

Vậy n đúng với \(n=k+1\)

Do đó \(S_n=3^{2n+1}+40n-67⋮64\forall n\inℤ^+\)

23 tháng 9 2020

Với \(n=1\)thì \(3^3+40-67=0⋮64\)

Giả sử \(3^{2k+1}+40k-67⋮64\)

Xét \(3^{2k+3}+40\left(k+1\right)-67\)

\(=9\left(3^{2k+1}+40k-67\right)+64\left(9-5k\right)⋮64\)

\(\)

23 tháng 9 2020

\(3^{2n+1}+5.2^{3n+1}\)

Với \(n=1\)thì \(3^5+5.2^4=243+80=323⋮19\)

Gải sử \(3^{2k+1}+5.2^{3k+1}⋮19\)

Xét \(3^{3k+5}+5.2^{3k+4}=3^{3k+2}.3^3+5.2^{3k+1}.2^3\)

\(=27\left(3^{3k+2}+5.2^{3k+1}\right)-19.3^{2k+1}⋮19\)

18 tháng 6 2019

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

18 tháng 6 2019

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12