K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

Đề lại thiếu:v

7 tháng 8 2020

Đoán chắc em đánh sai đề. Bất đẳng thức \(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\)  là thuần nhất và nó luôn \(\ge\frac{3}{2}\) theo Nesbitt thì cm làm gì.

10 tháng 8 2018

Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi

Ta có: a+b+c=0 => a+b=-c

=>(a+b)2=(-c)2

=>a2+2ab+b2=c2

=>a2+b2-c2=-2ab

Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca

=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)

31 tháng 8 2018

Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.

Ta có: \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)

\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)

4 tháng 4 2020

Ta cần tìm m để BĐT dưới là đúng

\(\frac{1}{a^2+b+c}=\frac{1}{a^2-a+3}\le\frac{1}{3}+m\left(a-1\right)\Leftrightarrow-\frac{a\left(a-1\right)}{3\left(a^2-a+3\right)}\le m\left(a-1\right)\)

Tương tự như trên ta dự đoán rằng\(m=\frac{-1}{9}\)thì BĐT phụ đúng

\(\frac{1}{a^2-a+3}\le\frac{4}{9}-\frac{a}{9}\Leftrightarrow0\le\frac{\left(a-1\right)^2\left(3-a\right)}{3\left(a^2-a+3\right)}\Leftrightarrow0\le\frac{\left(a-1\right)^2\left(b+c\right)}{3\left(a^2-a+3\right)}\)

Cmtt ta được

\(\frac{1}{b^2-b+3}\le\frac{4}{9}-\frac{b}{9};\frac{1}{c^2-c+3}\le\frac{4}{9}-\frac{c}{9}\)

Cộng theo vế của BĐT trên ta được

\(\frac{1}{a^2+b+c}+\frac{1}{b^2+a+c}+\frac{1}{c^2+b+a}\le\frac{4}{3}-\frac{a+b+c}{9}=1\)

=> ĐPCM

4 tháng 4 2020

Cái đó là cách UCT chứ còn j nữa. Em cần tìm cách khác 

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

8 tháng 8 2016

cái chỗ 1 nhỏ nhỏ ở cuối là đánh  nhầm nha

31 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{1+b^2}=a-\frac{a^2b}{b^2+1}\ge a-\frac{a^2b}{2b}=a-\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

31 tháng 7 2017

tc \(x^2+y^2\ge2xy\left(cauchy\right)\)

\(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)-ab}{1+b^2}=a-\frac{ab}{1+b^2}\ge a-\frac{ab}{2ab}\ge a-\frac{1}{2}\)(1)

tương tự \(\frac{b}{1+c^2}\ge b-\frac{1}{2}\)(2)

\(\frac{c}{1+a^2}\ge c-\frac{1}{2}\)(3)

từ (1)(2)(3)=> \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{3}{2}=3-\frac{3}{2}=\frac{3}{2}\left(a+b+c=3\right)\)

=> đpcm

AH
Akai Haruma
Giáo viên
24 tháng 3 2019

Lời giải:
Ta có:

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\geq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow \left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{a^2+c^2}-\frac{b}{a+c}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\geq 0\)

\(\Leftrightarrow \frac{ab(a-b)+ac(a-c)}{(b^2+c^2)(b+c)}+\frac{ba(b-a)+bc(b-c)}{(a^2+c^2)(a+c)}+\frac{ca(c-a)+cb(c-b)}{(a^2+b^2)(a+b)}\geq 0\)

\(\Leftrightarrow ab(a-b)\left(\frac{1}{(b^2+c^2)(b+c)}-\frac{1}{(a^2+c^2)(a+c)}\right)+bc(b-c)\left(\frac{1}{(a^2+c^2)(a+c)}-\frac{1}{(a^2+b^2)(a+b)}\right)+ca(c-a)\left(\frac{1}{(a^2+b^2)(a+b)}-\frac{1}{(b^2+c^2)(b+c)}\right)\geq 0\)

\(\Leftrightarrow ab(a-b).\frac{(a-b)(a^2+b^2+c^2+ab+bc+ac)}{(b^2+c^2)(b+c)(a^2+c^2)(a+c)}+bc(b-c).\frac{(b-c)(a^2+b^2+c^2+ab+bc+ac)}{(a^2+c^2)(a+c)(a^2+b^2)(a+b)}+ca(c-a).\frac{(c-a)(a^2+b^2+c^2+ab+bc+ac)}{(a^2+b^2)(a+b)(b^2+c^2)(b+c)}\geq 0\)

\(\Leftrightarrow (a^2+b^2+c^2+ab+bc+ac)\left[\frac{(a-b)^2}{(b^2+c^2)(b+c)(a^2+c^2)(a+c)}+\frac{(b-c)^2}{(a^2+c^2)(a+c)(a^2+b^2)(a+b)}+\frac{(c-a)^2}{(a^2+b^2)(a+b)(b^2+c^2)(b+c)}\right]\geq 0\)

(luôn đúng)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

21 tháng 4 2018

Câu này quá khó .Thần đồng chắc mới giải được.