K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

NV
24 tháng 4 2021

- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)

- Nếu \(abc< 0\Rightarrow\)  trong 3 số a; b; c có ít nhất 1 số âm

Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)

Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)

\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)

Vậy \(a=b=c=0\)

24 tháng 11 2021

\(AC=\sqrt{BC^2-AB^2}=8\\ \Rightarrow A=\dfrac{\dfrac{AC}{BC}+\dfrac{AB}{BC}}{\dfrac{AB}{AC}+\dfrac{AC}{AB}}=\dfrac{\dfrac{AB+AC}{BC}}{\dfrac{6}{8}+\dfrac{8}{6}}=\dfrac{\dfrac{14}{10}}{\dfrac{25}{12}}=\dfrac{7}{5}\cdot\dfrac{12}{25}=\dfrac{84}{125}\)

NV
10 tháng 4 2019

Chỉ đúng với điều kiện A, B, C là 3 góc trong tam giác \(\Rightarrow A+B+C=\pi\)

Đặt \(\frac{A}{2}=x\) , \(\frac{B}{2}=y\); \(\frac{C}{2}=z\) \(\Rightarrow x+y+z=\frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}x+y=\frac{\pi}{2}-z\\z=\frac{\pi}{2}-\left(x+y\right)\end{matrix}\right.\)

\(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cotx+coty+cotz=\frac{cosx}{sinx}+\frac{cosy}{siny}+\frac{cosz}{sinz}\)

\(=\frac{cosx.siny+cosy.sinx}{sinx.siny}+\frac{cosz}{sinz}=\frac{sin\left(x+y\right)}{sinx.siny}+\frac{cosz}{sinz}\)

\(=\frac{sin\left(\frac{\pi}{2}-z\right)}{sinx.siny}+\frac{cosz}{sinz}=\frac{cosz}{sinx.siny}+\frac{cosz}{sinz}=cosz\left(\frac{1}{sinx.siny}+\frac{1}{sinz}\right)\)

\(=\frac{cosz}{sinx.siny.sinz}\left(sinz+sinx.siny\right)=\frac{cosz}{sinx.siny.sinz}\left(sin\left(\frac{\pi}{2}-\left(x+y\right)\right)+sinxsiny\right)\)

\(=\frac{cosz}{sinx.siny.sinz}\left(cos\left(x+y\right)+sinx.siny\right)\)

\(=\frac{cosz}{sinx.siny.sinz}\left(cosx.cosy-sinx.siny+sinx.siny\right)\)

\(=\frac{cosx.cosy.cosz}{sinx.siny.sinz}=cotx.coty.cotz=cot\frac{A}{2}.cot\frac{B}{2}.cot\frac{C}{2}\)

1 tháng 4 2020

\( \cot A = \dfrac{{\cos A}}{{\sin A}} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\dfrac{a}{{2R}} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{abc}}.R = \dfrac{{{b^2} + {c^2} - {a^2}}}{{4S}}\\ \cot A + \cos B + \cos C = \dfrac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \dfrac{{{a^2} + {c^2} - {b^2}}}{{4S}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{4S}} = \dfrac{{{b^2} + {c^2} + {a^2}}}{{4S}}\)