K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

minh khong heu minh moi co lop10 thoi

15 tháng 8 2017

Theo bài ta có :

\(a_1;a_2;a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}a_2^2=a_1.a_3\\a^2_3=a_2.a_4\end{matrix}\right.\)

Ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Leftrightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\) \(\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\Leftrightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_1}{a_4}\)

\(\Leftrightarrowđpcm\)

15 tháng 8 2017

đúng lúc tớ vừa làm xong thì cậu tl ))

21 tháng 3 2021

Ta có: Xét với $a^3-a;a∈Z$

$=a(a^2-1)$

$=(a-1)a(a+1)$

Ta thấy với $a∈Z$ thì $(a-1);a;(a+1)$ là 3 số nguyên liên tiếp

$⇒$Có 1 số chia hết cho 3; ít nhất  1 số chia hết cho 2

$⇒\begin{cases}(a-1)a(a+1) \vdots 3\\ (a-1)a(a+1) \vdots 2\end{cases}$

$⇒(a-1)a(a+1) \vdots 6$ (do $(3;2)=1$)

Hay $a^3-a \vdots 6$

Vậy ta có: $a_1^3-a_1 \vdots 6;a_2^3-a_2 \vdots 6;a_100^3-a^100 \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3-(a_1+a_2+a_3+...+a_100) \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

Mà $a_1+a_2+a_3+...+a_100=2021^{2022}$

$2021 \equiv 5 (mod 6)$

$⇒2021^{2022} \equiv 5^{2022} (mod  6)$

Mà $5 \equiv -1 (mod 6)$

$⇒5^{2022} \equiv 1 (mod 6)$

$⇒2021^{2022} \equiv 1 (mod 6)$

tức $a_1+a_2+a_3+...+a_100 \equiv 1 (mod 6)$

Mà $a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv 1 (mod 6)$

$⇒S \equiv 1 (mod 6)$

Hay $S-1 \vdots 6$ (đpcm)

21 tháng 3 2021

Dạ cho hỏi là: mod6 với ba que là gì vậy ạ 

15 tháng 5 2018

Ta có: \(a^3_n-a_n=\left(a_n-1\right)a_n\left(a_n+1\right)⋮3\) 

\(\Rightarrow\left(a^3_1+a^3_2+...+a^3_{2016}\right)-\left(a_1+a_2+...+a_{2016}\right)⋮3\) 

Mà \(a_1+a_2+...+a_{2016}⋮3\) 

\(\Rightarrow A=a_1^3+a_2^3+...+a^3_{2016}⋮3\) 

=> ĐPCM

15 tháng 5 2018

Ta có tính chất sau 

\(\left(a_1^n+a_2^n+a_3^n+...+a_m^n\right)⋮\left(a_1+a_2+a_3+....+a_m\right)\) 

Với \(\hept{\begin{cases}n\equiv1\left(mod2\right)\\a,m,n\in N\end{cases}}\)

(Tự chứng minh)

Áp dụng tính chất trên vào bài 

Nhận thấy 3 là số lẻ 

=> \(A=\left(a_1^3+a_2^3+....+a_{2016}^3\right)⋮\left(a_1+a_2+....+a_{2016}\right)\)

<=> \(A⋮3\)

Vậy ............