K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Ta có (x+y)2 \(\le\) 2(x2+y2)= 2 \(\Rightarrow\)\(-\sqrt{2}\le x+y\le\sqrt{2}\).

Đặt a = x+y; b = x.y, ta được a2 - 2b = 1, ta cần tìm Max, Min của S = xy - 2(x+y) + 4 = b - 2a + 4.

a2 - 2b = 1 \(\Rightarrow\)2b = a2 - 1.

2.S = 2b - 4a + 8 = a2 - 1 - 4a + 8 = a2 - 4a + 7 = (a-2)2 + 3.

Do \(-\sqrt 2\le a\le \sqrt2\) nên \(-\sqrt2-2\le a-2 \le \sqrt 2-2 (<0).\)

Khi bình phương lên thì dấu sẽ thay đổi do các vế đều nhỏ hơn 0.

\((-\sqrt2-2)^2\ge (a-2)^2 \ge (\sqrt 2-2)^2 \Rightarrow (-\sqrt2-2)^2+3\ge (a-2)^2 +3\ge (\sqrt 2-2)^2+3 \Rightarrow (-\sqrt2-2)^2+3\ge 2S\ge (\sqrt 2-2)^2+3\)

23 tháng 9 2018

moba việt fake

3 tháng 5 2020

gọi m là 1 giá trị của biểu thức P, Khi đó hệ phương trình sau phải có nghiệm đối với x,y

\(\hept{\begin{cases}\frac{x^2}{9}+\frac{y^2}{16}=36\left(1\right)\\x-y+2004=m\left(2\right)\end{cases}}\)

Từ ( 2 ) suy ra y = x + 2004 - m

Thế vào ( 2 ),ta được : \(16x^2+9\left(x+2004-m\right)^2=144.36=5184\)

\(\Leftrightarrow25x^2+18\left(2004-m\right)x+9\left(2004-m\right)^2-5184=0\)( 3 )

Hệ PT có nghiệm khi PT ( 3 ) có nghiệm 

\(\Rightarrow\Delta'=\left[9\left(2004-m\right)\right]^2-25\left[9\left(2004-m\right)^2-5184\right]\ge0\)

\(\Leftrightarrow\left(2004-m\right)^2\le900\Leftrightarrow-30\le2004-m\le30\)

\(\Leftrightarrow1974\le m\le2034\)

từ đó tìm được GTNN của P là 1974 khi \(x=\frac{-54}{5};y=\frac{96}{5}\)

GTLN của P là 2034 khi \(x=\frac{54}{5};y=\frac{-96}{5}\)

NV
5 tháng 1 2021

Bài này chỉ có min, không có max của A nhé bạn

Muốn có max thì x;y;z phải không âm

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

13 tháng 9 2015

Từ giả thiết ta suy ra \(16x^2+9y^2=72^2.\) Theo bất đẳng thức Bunhia: \(36\times25=\left(\frac{x^2}{9}+\frac{y^2}{16}\right)\left(9+16\right)=\left(\frac{x^2}{9}+\frac{\left(-y\right)^2}{16}\right)\left(9+16\right)\ge\left(x-y\right)^2\to-30\le x-y\le30.\)

Do đó \(1985\le P\le2045\).

Khi \(x=\frac{54}{5},y=-\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=2045.\)

Khi \(x=-\frac{54}{5},y=\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=1985.\)

Vậy giá trị lớn nhất của \(P\)\(2045\) và giá trị bé nhất là \(1985.\)

 

NV
30 tháng 3 2021

\(P=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^3=\dfrac{64}{3}\)

\(P_{min}=\dfrac{64}{3}\) khi \(x=y=z=\dfrac{4}{3}\)

Đặt \(\left(x;y;z\right)=\left(a+1;b+1;c+1\right)\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c\ge0\end{matrix}\right.\)

\(\Rightarrow0\le a;b;c\le1\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\) \(\Rightarrow a^2+b^2+c^2\le a+b+c=1\)

\(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\)

\(P=a^2+b^2+c^2+2\left(a+b+c\right)+3=a^2+b^2+c^2+5\le1+5=6\)

\(P_{max}=6\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị

1 tháng 12 2019

Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.

*Tìm min

Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )

Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)

\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)

Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)

\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.

Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)

\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.

*Tìm Max:

Chưa nghĩ ra.

1 tháng 12 2019

Chết,bài tìm min nhầm chút:(dòng 10)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+yz-3x-2yz\ge0\)

Ta có;\(VT=x\left(x+y+z-3\right)+\left(y-z\right)^2=\left(y-z\right)^2\ge0\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\)

Như vầy nha!