K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

Cách 1 : giả sử a,b,c là 3 cạnh của tam giác đều =>a=b=c

=>\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Vậy a,b,c là ba cạnh của tam giác đều.

Cách 2: 

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}=6\)

<=>\(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=6\)

Áp dụng BĐT cô-si cho các cặp số không âm sau: c/b và b/c ; b/a và a/b ; c/a và a/c ta được:

\(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\)

Mà \(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=6\)

Do đó chỉ nhận khi dấu "=" xảy ra

Dấu ''=" xảy ra khi a=b=c

Vậy tam giác a,b,c là 3 cạnh của tam giác đều.

Cách 2 khó hỉu :D

21 tháng 2 2016

Bài này bạn dùng cách phá ngoặc và nhóm các hạng tử sẽ ra. Mình đã làm bài này rồi. Bạn tìm trong câu hỏi tương tự sẽ có

5 tháng 7 2021

Ta có:

A = \(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{3bc+2ac}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+3ac+2bc+3ab+3bc+2ac}\)(bđt svacxo \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\))

\(\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ac\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{5\left(a+b+c\right)^2}{3}}\) (bđt \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(*)

CM bđt * <=> \(3xy+3yz+3xz\le x^2+y^2+z^2+2xz+2xy+2yz\)

<=> \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng)

<=> A \(\ge\frac{3}{5}\) --> ĐPCM

17 tháng 6 2018

làm lại dong cuối:\(A\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Mà:\(2c+b=abc\Rightarrow a=\frac{2c+b}{cb}=\frac{2}{b}+\frac{1}{c}\)

\(\Rightarrow2a=\frac{4}{b}+\frac{2}{c}\)

\(\Rightarrow A\ge2a+\frac{6}{a}\)

17 tháng 6 2018

Ta có:\(A=\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)

\(+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

\(\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{c}\) (Do a,b,c là 3 cạnh của tam giác nên:\(\hept{\begin{cases}a+b-c>0\\a+c-b>0\\c+b-a>0\end{cases}}\)

\(=\frac{6}{a}+2a\ge4\sqrt{3}\left(cosi\right)\left(a>0\right)\)

Dấu = xảy ra khi:

\(a=b=c=\sqrt{3}\)

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

21 tháng 7 2020

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

21 tháng 7 2020

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c