K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

BĐT \(\Leftrightarrow\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(a+b\right)\right]\left[\left(c+a\right)+\left(b+c\right)\right]\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Đây là BĐT quy thuộc! \(\left(a+b\right)+\left(a+c\right)\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) rồi tương tự các kiểu.

Nhân theo vế thu được đpcm

NV
1 tháng 3 2020

Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)

\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế:

\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)

Lại có:

\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)

18 tháng 7 2021

\(a+b+c=1=>\left\{{}\begin{matrix}1-a=b+c\\1-b=a+c\\1-c=a+b\\\end{matrix}\right.\)

\(=>A=\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)

\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\)

bbđt AM-GM

\(=>A\ge\dfrac{2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}}{abc}=\dfrac{8abc}{abc}=8\left(đpcm\right)\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)

 

NV
18 tháng 7 2021

Đặt vế trái BĐT cần chứng minh là P

Ta có:

\(P=\left(\dfrac{a+b+c}{a}-1\right)\left(\dfrac{a+b+c}{b}-1\right)\left(\dfrac{a+b+c}{c}-1\right)\)

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{abc}=8\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

15 tháng 8 2019

\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)

Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)

Nhân theo vế ta đc :

\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Áp dụng bđt Cauchy :

\(VT\ge\frac{8abc}{abc}=8\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

8 tháng 7 2019

Từ \(a+b+c=1\) thế vào biểu thức sau

\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)=\left(\frac{a+b+c}{a}-\frac{a}{a}\right)\left(\frac{a+b+c}{b}-\frac{b}{b}\right)\left(\frac{a+b+c}{c}-\frac{c}{c}\right)\)

\(=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)(1)

Với a,b,c>0 , Áp dụng bất đẳng thức AM-GM (cauchy) cho hai số không âm ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)(2)

Từ (1) và (2) suy ra \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge\frac{8abc}{abc}=8\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)

8 tháng 7 2019

mình wên nữa: đừng ti ck cho câu trả lời này nhé

hay ko = hên :)) nghĩ bừa cái ra lun 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)\(\Leftrightarrow\)\(\frac{1}{a}+1=1-\frac{1}{b}+1-\frac{1}{c}\)

\(\Leftrightarrow\)\(\frac{a+1}{a}=\frac{b-1}{b}+\frac{c-1}{c}\ge2\sqrt{\frac{\left(b-1\right)\left(c-1\right)}{bc}}\)

Tương tự ta cũng có : 

\(\frac{b+1}{b}\ge2\sqrt{\frac{\left(c-1\right)\left(a-1\right)}{ca}};\frac{c+1}{c}\ge2\sqrt{\frac{\left(a-1\right)\left(b-1\right)}{ab}}\)

Nhân theo vế ta được : 

\(\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{abc}\ge8\sqrt{\frac{\left(a-1\right)^2\left(b-1\right)^2\left(c-1\right)^2}{a^2b^2c^2}}=\frac{8\left(a-1\right)\left(b-1\right)\left(c-1\right)}{abc}\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le\frac{1}{8}\left(a+1\right)\left(b+1\right)\left(c+1\right)\) ( đpcm ) 

...

28 tháng 11 2017

\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)

\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)

\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

10 tháng 12 2017

\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}.\)

\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)

\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)

\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)