K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Áp dụng bất đẳng thức Cô-si, ta có: \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}=\left(a-\frac{9ab^2}{1+9b^2}\right)+\left(b-\frac{9bc^2}{1+9c^2}\right)+\left(c-\frac{9ca^2}{1+9a^2}\right)\)\(\ge\left(a-\frac{9ab^2}{6b}\right)+\left(b-\frac{9bc^2}{6c}\right)+\left(c-\frac{9ca^2}{6a}\right)=\left(a+b+c\right)-\frac{3\left(ab+bc+ca\right)}{2}\)\(\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = c = 1/3

NV
15 tháng 7 2020

\(VT=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\)

\(VT=a-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}\)

\(VT\ge a+b+c-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)

\(VT\ge1-\frac{3}{2}\left(ab+bc+ca\right)\)

\(VT\ge1-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

28 tháng 11 2019

Áp dụng BĐT Bunhiacopxky :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)

\(P\le\frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM - GM :

\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)

Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((9a^3+3b^2+c)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\geq (a+b+c)^2=1\)

\(\Rightarrow 9a^3+3b^2+c\geq \frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow \frac{a}{9a^3+3b^2+c}\leq a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế:

\(\Rightarrow P\leq \frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+(ab+bc+ac)\)

\(P\leq \frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\leq \frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{\max}=1\)

Vậy GTLN của $P$ là $1$ khi \(a=b=c=\frac{1}{3}\)

17 tháng 2 2023

Ta có: \(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{3ab}{2}\)

\(\Rightarrow\)\(\text{Σ}\dfrac{a}{1+9b^2}\ge a+b+c-\dfrac{3\left(ab+bc+ca\right)}{2}\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2}=\dfrac{1}{2}\)

(Áp dụng BĐT Cô Si cho 2 số dương, ta có:

\(\text{ }ab+bc+ca\le a^2+b^2+c^2\Rightarrow3\left(\text{ }ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

28 tháng 8 2016

\(\frac{a}{9b^2+1}=\frac{a\left(9b^2+1\right)-9ab^2}{9b^2+1}=a-\frac{9ab^2}{9b^2+1}\ge a-\frac{9ab^2}{2\sqrt{9b^2.1}}=\)

\(=a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)

Tương tự với các biểu thức còn lại, kết hợp với 

\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)

là được đáp án.

3 tháng 6 2021

Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)

Theo bài ra, ta có:

 x+y+z=3

\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Áp dụng kĩ thuật Cau-chy ngược dấu ta có:

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)

Dấu '=' xảy ra <=> a=3;b=2;c=1

3 tháng 6 2021

*Bài khá giống bạn kia :)

Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)

\(\Rightarrow x+y+z=3\)

BĐT cần chứng minh trở thành :

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Áp dụng kĩ thuật Cô Si ngược dấu ta có :

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\)