K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cách giải khác đây: 

Áp dụng bđt bunhia copxki ta có \(A^2\le6\left(a+b+c\right)=6\)vì a+b+c=1

nên \(A\le\sqrt{6}\)

Dấu = xảy ra <=>a=b=c=1/3

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

22 tháng 8 2020

Bất đẳng thức cần chứng minh tương đương \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le2.\sqrt{2}.\sqrt[3]{9}\)

Ta quy bài toán về chứng minh hai bất đẳng thức sau 

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le3\sqrt{2}\)và \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Áp dụng bất đẳng thức Bunyakovsky ta được \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{6\left(a^2+b^2+c^2\right)}\)\(\le\sqrt{6\sqrt{3\left(a^4+b^4+c^4\right)}}\le3\sqrt{2}\)

Mặt khác ta lại có \(\left[\left(x^3+y^3+z^3\right)\left(x+y+z\right)\right]^2\ge\left(x^2+y^2+z^2\right)^4\)\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Do đó ta được \(\left(x^3+y^3+z^3\right)^2\ge\frac{\left(x^2+y^2+z^2\right)^3}{3}\)

Áp dụng kết quả trên ta thu được \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right]^3\)

Mà theo bất đẳng thức Cauchy-Schwarz ta có\(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{1}{2\left(a^2+b^2\right)}+\frac{1}{2\left(b^2+c^2\right)}+\frac{1}{2\left(c^2+a^2\right)}\) \(\ge\frac{9}{4\left(a^2+b^2+c^2\right)}\ge\frac{9}{4\sqrt{3\left(a^4+b^4+c^4\right)}}\ge\frac{9}{4\sqrt{9}}=\frac{3}{4}\)

Do đó ta có \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{3}{4}\right]^3=\frac{9}{64}\)

Suy ra \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Từ các kết quả trên ta được \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le\frac{3\sqrt{2}}{\frac{\sqrt[3]{3}}{2}}=2.\sqrt{2}.\sqrt[3]{9}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###

21 tháng 8 2017

mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi

21 tháng 8 2017

thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm