K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

mk ko bt 123

\(\frac{a}{c}=\frac{a-b}{b-c}\Rightarrow a\left(b-c\right)=c\left(a-b\right)\)           (1)

\(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\)                  (2)

\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\)                  (3)

\(Từ\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)điều phải chứng minh

16 tháng 12 2016

ta có 

\(\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(3+\frac{bc\left(b+c\right)+ac\left(b+c\right)+ab\left(a+b\right)}{abc}=0\) 

\(\frac{b^2c+bc^2}{abc}>0\)

tương tự các phân thức còn lại  suy ra a=b=c

13 tháng 1 2020

T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)

=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)

=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)

=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)

=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)

=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)

=> trong 3 số a,b,c có  2 số đối nhau  ( đpcm)

Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)

                                                                                    \(=-\frac{1}{c^{2019}}\)(1)

\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\)  (2)

Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)  (đpcm)

13 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)

Thay vào tính nốt

11 tháng 1 2020

ĐKXĐ: \(x\ne a,x\ne b\). Biến đổi phương trình:

\(\frac{x-a}{b}+\frac{x-b}{a}=\frac{b}{x-a}+\frac{a}{x-b}\Leftrightarrow\frac{a\left(x-a\right)+b\left(x-b\right)}{ab}=\frac{b\left(x-b\right)+a\left(x-a\right)}{\left(x-a\right)\left(x-b\right)}\)

\(\Leftrightarrow\left[a\left(x-a\right)+b\left(x-b\right)\right].\left[\frac{1}{ab}-\frac{1}{\left(x-a\right)\left(x-b\right)}\right]=0\)

Giải \(a\left(x-a\right)+b\left(x-b\right)=0\) được \(x=\frac{a^2+b^2}{a+b}\)( thỏa mãn ĐKXĐ)

Giải \(ab=\left(x-a\right)\left(x-b\right)\) được \(x=0\)\(x=a+b\) ( thỏa mãn ĐKXĐ)

Nhận thấy \(0,a+b,\frac{a^2+b^2}{a+b}\) là 3 nghiệm phân biệt.

11 tháng 1 2020

Nick ảo cj xóa câu hỏi nhé

3 tháng 9 2020

                      Bài làm :

Ta có :

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ac=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)

\(\Leftrightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\left(1\right)\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\left(2\right)\)

Thay (1) vào (2) ; ta được :

\(\frac{1}{a^3}+\frac{1}{b^3}-\frac{3}{abc}=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

=> Điều phải chứng minh

3 tháng 9 2020

Ta có \(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2ac+2bc=0\)

\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow ab+ac+bc=0\)

Ta lại có giả sử

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\frac{3}{abc}\)

\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)

\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3.a^2b^2c^2\)

\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3-3.a^2b^2c^2=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ac\right)-3ab^3c\left(-ac\right)-3a^2b^2c^2=0\)

\(\Leftrightarrow0+3a^2b^2c^2-3a^2b^2c^2+0=0\)

\(\Leftrightarrow0=0\left(lđ\right)\)

Vậy bất đẳng thức được chứng minh 

26 tháng 11 2017

1/a+1/b+1/c = 0 <=>ab+bc+ca/abc=0

=> ab+bc+ca = 0 

Khi đó : (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca) = a^2+b^2+c^2+2.0 =  a^2+b^2+c^2

=> ĐPCM

k mk nha

15 tháng 1 2017

vô đây mà xem ; /hoi-dap/question/125436.html?pos=554506