K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Đặt \(A=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)

Hmm... Ta có BĐT phụ : \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)"=" <=> x = y

\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right);\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right);\frac{1}{c+a}\le\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow A\le\frac{1}{2}\left(\frac{ab+ac+bc}{abc}\right)\)

\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\)

Ta có: \(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\le\frac{a^2+b^2+c^2+2ab+2ac+2bc}{6abc}=\frac{\left(a+b+c\right)^2}{6abc}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

10 tháng 8 2017

hi kết bạn nha

6 tháng 4 2017

Ta có:

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{1}{2}\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{2}\)

7 tháng 4 2017

BĐT trên \(=\frac{9}{2}\). Còn cách làm thì giống bạn alibaba nguyễn .

~~~ Chúc bạn học giỏi ~~~

15 tháng 2 2020

Cần CM bĐT phụ sau : \(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\left(1\right)\)

Có \(a+b\ge2\sqrt{ab},\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\Rightarrow\) (1) đúng

Áp dụng (1) ta có \(\frac{1}{2a+b+c}=\frac{1}{\left(a+b+c\right)+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a+b+c}\right)\left(2\right)\)

Tương tự có \(\frac{1}{a+2b+c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{b}\right)\left(3\right),\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{c}\right)\left(4\right)̸\)

Cọng (2),(3) và (4) có \(VT\le\frac{1}{4}\left(\frac{3}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

NV
16 tháng 2 2020

\(\frac{1}{2a+b+c}=\frac{1}{a+a+b+c}\le\frac{1}{4}\left(\frac{1}{a+a}+\frac{1}{b+c}\right)\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự ta có: \(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

5 tháng 2 2020

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

5 tháng 2 2020

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)