K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow\frac{2017}{2a^2+2b^2+2018}\le\frac{2017}{\left(a+b\right)^2+2018}\)

Lại có: \(\frac{a+b}{2}=1\)

\(\Rightarrow a+b=2\)

\(\Rightarrow M\le\frac{2017}{2^2+2018}=\frac{2017}{2022}\)

Dấu bằng xảy ra khi a=b=1

28 tháng 12 2017

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow\frac{2017}{2a^2+2b^2+2018}\le\frac{2017}{\left(a+b\right)^2+2018}\)

Lại có: \(\frac{a+b}{2}=1\Rightarrow a+b=2\)

\(\Rightarrow M\le\frac{2017}{2^2+2018}=\frac{2017}{2022}\)

Dấu "=" xảy ra khi a=b=1

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

22 tháng 12 2017

Ta có :\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

Suy ra \(\frac{2011}{2a^2+2b^2+2008}\le\frac{2011}{\left(a+b\right)^2+2008}=\frac{2011}{4+2008}=\frac{2011}{2012}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

20 tháng 2 2021

Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)

Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)

Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1

25 tháng 5 2017

Từ \(2a+2b+2c=3abc\)

\(\Leftrightarrow\frac{2}{3bc}+\frac{2}{3ac}+\frac{2}{3ab}=1\left(1\right)\)

Khi đó \(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3\sqrt[3]{\frac{b}{a^2}\cdot\frac{c}{b^2}\cdot\frac{a}{c^2}}=3\sqrt[3]{\frac{1}{abc}}\)

\(P_{Min}\) xảy ra khi \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}=3\sqrt[3]{\frac{1}{abc}}\forall a=b=c\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow a=b=c=\sqrt{2}\)

Khi đó \(P_{Min}=3\sqrt[3]{\frac{1}{abc}}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}=\frac{3\sqrt{2}-6}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{2}\)

26 tháng 5 2017

Bài này giải như này cơ:

\(2a+2b+2c=3abc\)\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{3}{2}\)

\(P=\frac{\left(a-1\right)+\left(b-1\right)}{a^2}+\frac{\left(b-1\right)+\left(c-1\right)}{b^2}+\frac{\left(c-1\right)+\left(a-1\right)}{c^2}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(a-1\right)\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+\left(b-1\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\left(c-1\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{2\left(a-1\right)}{ac}+\frac{2\left(b-1\right)}{ab}+\frac{2\left(c-1\right)}{bc}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\)

\(\ge\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}-3=\sqrt{3.\frac{3}{2}}-3=\frac{3\sqrt{2}-6}{2}\)

Vậy \(minP=\frac{3\sqrt{2}-6}{2}\Leftrightarrow a=b=c=\sqrt{2}\)

11 tháng 10 2019

áp dụng bdt (a2+b2+c2)(x2+y2+z2)\(\ge\left(ax+by+cz\right)^2\) dấu '=" khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

(\(\left(\sqrt{2b+c}\right)^2+\left(\sqrt{2c+a}\right)^2+\left(\sqrt{2a+b}\right)^2\)). P\(\ge\left(a+b+c\right)^2\)

<=> P\(\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{2018}{3}\)=> P min= \(\frac{2018}{3}\)

P min khi \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2b+a}\)<=> a=b=c= \(\frac{2018}{3}\)

17 tháng 12 2018

Bài này dễ mà bạn

17 tháng 12 2018

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

10 tháng 7 2017

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

đề thi vào lớp 10 năm nay của tỉnh thanh hóa