cho hình chữ nhật abcd ab=12cm bc=5cm . gọi h là hình chiếu của a trên tia bd tia ah cắt cd tại k
cm tam giác abd đồng dạng Δdak
tính độ dài dk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x² - 2x = 8
x² - 2x - 8 = 0
x² - 2x + 1 - 9 = 0
(x² - 2x + 1) - 9 = 0
(x - 1)² - 3² = 0
(x - 1 - 3)(x - 1 + 3) = 0
(x - 4)(x + 2) = 0
⇒ x - 4 = 0 hoặc x + 2 = 0
*) x - 4 = 0
x = 4
*) x + 2 = 0
x = -2
Vậy x = -2; x = 4
Gọi x là số thứ nhất
⇒ Số thứ hai là: 59 - x
Theo đề bài, ta có phương trình:
2x - 3(59 - x) = -7
2x - 177 + 3x = -7
5x = -7 + 177
5x = 170
x = 170 : 5
x = 34
Vậy số thứ nhất là 34
số thứ hai là 59 - 34 = 25
a: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(1\right)\)
ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(AB\cdot AC=AH\cdot BC\)
b: Xét ΔABC có
D,E lần lượt là trung điểm của BA,BC
=>DE là đường trung bình của ΔABC
=>DE//AC và DE=1/2AC
=>AC=2DE
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\)
=>\(CH\cdot CB=CA^2=4DE^2\)
a) \(P=\left(\dfrac{x^2-2}{x^2+2x}+\dfrac{1}{x+2}\right):\dfrac{x+1}{x}\left(x\ne\left\{0;-2;-1\right\}\right)\\ =\left[\dfrac{x^2-2}{x\left(x+2\right)}+\dfrac{1}{x+2}\right].\dfrac{x}{x+1}\\ =\dfrac{x^2-2+x}{x\left(x+2\right)}.\dfrac{x}{x+1}\\ =\dfrac{\left(x+2\right)\left(x-1\right)}{x\left(x+2\right)}.\dfrac{x}{x+1}\\ =\dfrac{x-1}{x+1}\)
b) \(P=\dfrac{5}{2}\Rightarrow\dfrac{x-1}{x+1}=\dfrac{5}{2}\\ \Rightarrow2\left(x-1\right)=5\left(x+1\right)\\ \Leftrightarrow2x-2=5x+5\\ \Leftrightarrow5x-2x=-2-5\\ \Leftrightarrow3x=-7\\ \Leftrightarrow x=-\dfrac{7}{3}\left(TMDK\right)\)
Vậy : x=-7/3 thì P=5/2
c) \(P=\dfrac{x-1}{x+1}=\dfrac{x+1-2}{x+1}\\ =1-\dfrac{2}{x+1}\)
Để P nhận gt nguyên => 2/x+1 đạt gt nguyên
=> 2 chia hết cho x+1
=> x+1 thuộc Ư(2)={1;-1;2;-2}
=> x thuộc {0;-2;1;-3}
Đối chiếu đk : x khác {0;-2;-1}
Kết luận : x thuộc {1;-3} là 2 giá trị nguyên của x thỏa mãn P nguyên
a:
b: Phương trình hoành độ giao điểm là:
\(2x+6=-\dfrac{1}{2}x+3\)
=>\(\dfrac{5}{2}x=-3\)
=>\(x=-3:\dfrac{5}{2}=-\dfrac{6}{5}\)=-1,2
Thay x=-1,2 vào y=2x+6, ta được:
\(y=2\cdot\left(-1,2\right)+6=3,6\)
vậy: C(-1,2;3,6)
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=0\end{matrix}\right.\)
vậy: A(-3;0); B(6;0); C(-1,2;3,6)
\(AB=\sqrt{\left(6+3\right)^2+\left(0-0\right)^2}=9\)
\(AC=\sqrt{\left(-1,2+3\right)^2+\left(3,6-0\right)^2}=\dfrac{9\sqrt{5}}{5}\)
\(BC=\sqrt{\left(-1,2-6\right)^2+\left(3,6-0\right)^2}=\dfrac{18\sqrt{5}}{5}\)
Vì \(AC^2+BC^2=AB^2\)
nên ΔABC vuông tại C
=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\dfrac{9}{\sqrt{5}}\cdot\dfrac{18}{\sqrt{5}}=\dfrac{81}{5}\)
d: (d2): y=-1/2x+3
=>\(-\dfrac{1}{2}x-y+3=0\)
\(d\left(M;\left(d2\right)\right)=\dfrac{\left|0\cdot\left(-\dfrac{1}{2}\right)+\left(-3\right)\cdot\left(-1\right)+3\right|}{\sqrt{\left(-\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=6:\dfrac{\sqrt{5}}{2}=\dfrac{12}{\sqrt{5}}\)
Xét ΔADB vuông tại D có DH là đường cao
nên \(AH\cdot AB=AD^2\left(1\right)\)
Xét ΔADC vuông tại D có DK là đường cao
nên \(AK\cdot AC=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AB=AK\cdot AC\)
=>\(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)
Xét ΔAHK vuông tại A và ΔACB vuông tại A có
\(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)
Do đó: ΔAHK~ΔACB
a) \(A=\left(\dfrac{3x^2+3}{x^3-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{1}{x-1}\right):\dfrac{2x^2-5x+5}{x-1}\left(x\ne1\right)\)
\(=\left[\dfrac{3x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\dfrac{x-1}{2x^2-5x+5}\)
\(=\dfrac{3x^2+3-\left(x-1\right)^2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{2x^2-5x+5}\)
\(=\dfrac{2x^2-x+2-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{2x^2-5x+5}\)
\(=\dfrac{2x^2-x+2-x^2+2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{2x^2-5x+5}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{2x^2-5x+5}\)
\(=\dfrac{1}{2x^2-5x+5}\)
b) Ta có: \(A=\dfrac{1}{2x^2-5x+5}=\dfrac{1}{2\left(x^2-\dfrac{5}{2}x+\dfrac{5}{2}\right)}\)
\(=\dfrac{1}{2\left(x^2-2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{25}{16}+\dfrac{5}{2}\right)}\)
\(=\dfrac{1}{2\left[\left(x^2-2\cdot\dfrac{5}{4}+\dfrac{25}{16}\right)+\dfrac{15}{16}\right]}\)
\(=\dfrac{1}{2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}}\)
Mà: \(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x\ne1\)
\(\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}\ge\dfrac{15}{8}\forall x\ne1\)
\(\Rightarrow\dfrac{1}{2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}}\le\dfrac{8}{15}\forall x\ne1\)
Dấu "=" xảy ra khi: \(\left(x-\dfrac{5}{4}\right)^2=0\Leftrightarrow x=\dfrac{5}{4}\)
Vậy: \(A_{max}=\dfrac{8}{15}\Leftrightarrow x=\dfrac{5}{4}\)
a) \(\dfrac{1+\dfrac{1}{x}}{x-\dfrac{1}{x}}=\dfrac{\dfrac{x+1}{x}}{\dfrac{x^2-1}{x}}=\dfrac{x+1}{x^2-1}=\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\left(x\ne0;x\ne1;x\ne-1\right)\)
b) \(\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{x^2-4x+4}\right):\left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)\left(x\ne\pm2\right)\)
\(=\left[\dfrac{1}{\left(x+2\right)^2}-\dfrac{1}{\left(x-2\right)^2}\right]:\left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)\)
\(=\dfrac{\left(\dfrac{1}{x+2}\right)^2-\left(\dfrac{1}{x-2}\right)^2}{\dfrac{1}{x+2}+\dfrac{1}{x-2}}\)
\(=\dfrac{\left(\dfrac{1}{x+2}-\dfrac{1}{x-2}\right)\left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)}{\dfrac{1}{x+2}+\dfrac{1}{x-2}}\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x-2}\)
\(=\dfrac{x-2-x-2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4}{x^2-4}\)
c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(\left(\dfrac{x}{x+1}+1\right):\left(1-\dfrac{3x^2}{1-x^2}\right)\)
\(=\dfrac{x+x+1}{x+1}:\dfrac{1-x^2-3x^2}{1-x^2}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{x^2-1}{4x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\left(x-1\right)\cdot\dfrac{\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=\dfrac{\left(x-1\right)}{2x-1}\)
d:
ĐKXĐ: x<>1
\(\dfrac{3x}{x^3-1}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x+\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
e: ĐKXĐ: \(x\notin\left\{1;0;-1\right\}\)
\(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+x}\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^3}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\left(x-1\right)\cdot\left(\dfrac{x^2+x+1-\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x^2+x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x^2+x+1-x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1-x^2-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
a: Xét ΔABD vuông tại A và ΔDAK vuông tại D có
\(\widehat{ABD}=\widehat{DAK}\left(=90^0-\widehat{ADB}\right)\)
Do đó: ΔABD~ΔDAK
b: Ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=12^2+5^2=169=13^2\)
=>BD=13(cm)
ΔABD~ΔDAK
=>\(\dfrac{BD}{AK}=\dfrac{AB}{DA}\)
=>\(\dfrac{13}{AK}=\dfrac{12}{5}\)
=>\(AK=13\cdot\dfrac{5}{12}=\dfrac{65}{12}\left(cm\right)\)