Bài 3: Chứng minh bằng hai cách
1, (x-1)(x\(^2\)+x+1)=x\(^3\)-1
2, (x\(^3\)+x\(^2\)y+xy\(^2\)+y\(^3\))(x-y)=x\(^3\)-y\(^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\left(ab+bc+ac\right)\)
\(=a^3+ab^2+ac^2+a^2b+b^3+c^2b+a^2c+b^2c+c^3-a^2b-abc-a^2c-ab^2-b^2c-abc-abc-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc\left(đpcm\right)\)
b) Bạn chỉ cần nhân bung cả 2 vế ra là được á .
c) \(2\left(a+b+c\right)\left(\dfrac{b}{2}+\dfrac{c}{2}-\dfrac{a}{2}\right)\)
\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(đpcm\right)\)
Bài này có rất nhiều lời giải tương tự chỉ thay số thôi em
Vẽ hình
Tính diện tích 4 tam giác
MNPQ = ABCD - S4 tam giác
Số thứ 80:
1+3x(80-1) = 238
Số lượng số hạng là:
(301-1):3 + 1 = 101 số hạng
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)
Bài 37:
a) A = \(\left\{T;R;Ư;Ơ;N;G;Q;U;A\right\}\)
b) B= \(\left\{H;O;C;S;I;N;T;A;E\right\}\)
Bài 38: ( mình viết 2 cách là theo thứ tự nhé )
a) A = \(\left\{0;1;2;3;4\right\}\)
A = \(\left\{x\in N|x< 5\right\}\)
b) M = \(\left\{8;9;10;...;15;16\right\}\)
M = \(\left\{x\in N|7< x< 17\right\}\)
c) N = \(\left\{3;4;5;6;...;13;14\right\}\)
N = \(\left\{x\in N|3\le x< 15\right\}\)
d) D = \(\varnothing\) ( D thuộc tập hợp rỗng )
D = \(\left\{x\in N|2< x< 3\right\}\)
e) E = \(\left\{5;6\right\}\)
E = \(\left\{x\in N|5\le x\le6\right\}\)
f ) F = \(\left\{11;12;13;14;15\right\}\)
F = \(\left\{x\in N|10< x\le15\right\}\)
Bài 39:
a) A = \(\left\{x\in N|99< x\le999\right\}\)
b) B = \(\left\{x\in N|x< 8\right\}\)
c) C = \(\left\{x\in N|10\le x\le99\right\}\)
d) D = \(\left\{x\in N|0< x< 5\right\}\)
Chúc bạn học tốt
A = \(\dfrac{1}{3}\) + \(\dfrac{2}{3^2}\) + \(\dfrac{3}{3^3}\)+.........+\(\dfrac{100}{3^{100}}\)
3A = 1 + \(\dfrac{2}{3}\) + \(\dfrac{3}{3^2}\) + \(\dfrac{4}{3^3}\)+...+\(\dfrac{100}{3^{99}}\)
3A - A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{99}}\)- \(\dfrac{100}{3^{100}}\)
2A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)
A = ( 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)) : 2
Đặt B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+ ........ + \(\dfrac{1}{3^{99}}\)
3B = 3 + 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +...+\(\dfrac{1}{3^{98}}\)
3B - B = 3 - \(\dfrac{1}{3^{99}}\)
2B = 3 - \(\dfrac{1}{3^{99}}\)
B = (3 - \(\dfrac{1}{3^{99}}\)): 2 =\(\dfrac{3}{2}\) - \(\dfrac{1}{3^{99}.2}\)
A = ( \(\dfrac{3}{2}\) - \(\dfrac{1}{2.3^{99}}\) - \(\dfrac{100}{3^{100}}\)) : 2
A = \(\dfrac{3}{4}\) - \(\dfrac{1}{4.3^{99}}\) - \(\dfrac{50}{3^{100}}\) < \(\dfrac{3}{4}\) ( đpcm)
Bài 1 :
Cách 1 : Dùng hằng đẳng thức : \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
Áp dụng hằng đẳng thức trên ta suy ra được : đpcm.
Cách 2 :
\(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1\left(VP\right)\)
suy ra : đpcm.
Bài 2 :
Hình như sai đề rồi á bạn . Đáp án đúng phải là \(x^4-y^4\) á cậu.
Cách 1 : Ta biến đổi vế phải thành vế trái .
Ta có : \(VP=x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)\)
\(=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\left(VT\right)\)
Suy ra : đpcm.
Cách 2 : Bạn cũng có thể dùng hằng đẳng thức hoặc nhân bung vế trái ra á.