x+2y+xy=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a-b=\dfrac{2}{3}\left(a+b\right)\)
\(3\left(2a-b\right)=2\left(a+b\right)\)
\(6a-3b=2a+2b\)
\(4a=5b\)
\(a=\dfrac{5}{4}b\)
Thay vào A ta được:
\(A=\dfrac{\left(\dfrac{5}{4}b\right)^4+5^4}{b^4+4^4}=\dfrac{\dfrac{5^4}{4^4}\left(b^4+4^4\right)}{b^4+4}=\dfrac{5^4}{4^4}\)
\(\dfrac{x+8}{28}+\dfrac{x+10}{27}=\dfrac{x+12}{26}+\dfrac{x+14}{25}\)
\(\left(\dfrac{x+8}{28}+2\right)+\left(\dfrac{x+10}{27}+2\right)=\left(\dfrac{x+12}{26}+2\right)+\left(\dfrac{x+14}{25}+2\right)\)
\(\dfrac{x+64}{28}+\dfrac{x+64}{27}=\dfrac{x+64}{26}+\dfrac{x+64}{25}\)
\(\dfrac{x+64}{28}+\dfrac{x+64}{27}-\dfrac{x+64}{26}-\dfrac{x+64}{25}=0\)
\(\left(x+64\right)\left(\dfrac{1}{28}+\dfrac{1}{27}-\dfrac{1}{26}-\dfrac{1}{25}\right)=0\)
\(x+64=0\) (do \(\dfrac{1}{28}+\dfrac{1}{27}-\dfrac{1}{26}-\dfrac{1}{25}\ne0\))
\(x=-64\)
\(10M=\dfrac{10.\left(10^{100}+1\right)}{10^{101}+1}=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)
\(10N=\dfrac{10.\left(10^{101}+1\right)}{10^{102}+1}=\dfrac{10^{102}+10}{10^{102}+1}=\dfrac{10^{102}+1+9}{10^{102}+1}=1+\dfrac{9}{10^{102}+1}\)
Do \(10^{101}< 10^{102}\Rightarrow10^{101}+1< 10^{102}+1\)
\(\Rightarrow\dfrac{9}{10^{101}+1}>\dfrac{9}{10^{102}+1}\)
\(\Rightarrow1+\dfrac{9}{10^{101}+1}>1+\dfrac{9}{10^{102}+1}\)
\(\Rightarrow10M>10N\)
\(\Rightarrow M>N\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)
\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)
\(3\left(x+y\right)=xy\)
\(xy-3x-3y=0\)
\(xy-3x-3y+9=9\)
\(x\left(y-3\right)-3\left(y-3\right)=9\)
\(\left(x-3\right)\left(y-3\right)=9\)
Ta có bảng sau:
x-3 | -9 | -3 | -1 | 1 | 3 | 9 |
y-3 | -1 | -3 | -9 | 9 | 3 | 1 |
x | -6 | 0 (loại) | 2 | 4 | 6 | 12 |
y | 2 | 0 (loại) | -6 | 12 | 6 | 4 |
Vậy \(\left(x;y\right)=\left(-6;2\right);\left(2;-6\right);\left(4;12\right);\left(6;6\right);\left(12;4\right)\)
Thêm điều kiện: `x;y in Z`
Do `x;y in Z`
`=> x-1 in Z và y+1 in Z`
Mà `(x-1)(y+1)=3`
`=> x - 1 in Ư(3) = {-3;-1;1;3}`
`=> x in {-2;0;2;4} `
Khi đó: `y + 1 in {-1;-3;3;1}`
`=> y in {-2;-4;2;0}` (Thỏa mãn)
Vậy `(x;y) in {(-2;-2);(0;-4);(2;2);(4;0)}`
Em ghi thế này thì cả C lẫn D đều sai
Đáp án C chắc là \(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\) mà em ghi nhầm
a) Căn bậc 2 số học của `121` là `11`
Căn bậc 2 của `121` là ` +-11`
b) Căn bậc 2 số học của `(-5/6)^2 ` là ` 5/6`
Căn bậc 2 của `(-5/6)^2` là ` +-5/6`
`A = (5m + n - 4)(9m - 11n + 1) `
- Xét m và n là số lẻ thì:
`5m` là số lẻ
`n` là số lẻ
`=> 5m + n` là số chẵn
`=> 5m + n - 4 ` là số chẵn
`=> A` chia hết 2
- Xét m và n là số chẵn thì:
`5m` là số chẵn
`n` là số chẵn
`=> 5m + n` là số chẵn
`=> 5m + n - 4 ` là số chẵn
`=> A` chia hết 2
- Xét m là số lẻ và n là số chẵn thì:
`9m` là số lẻ
`11n` là số chẵn
`=> 9m - 11n` là số lẻ
`=> 9m - 11n + 1` là số chẵn
`=> A` chia hết cho 2
- Xét m là số chẵn và n là số lẻ thì:
`9m` là số chẵn
`11n` là số lẻ
`=> 9m - 11n` là số lẻ
`=> 9m - 11n + 1 ` là số chẵn
`=> A` chia hết cho 2
Vậy với mọi số nguyên m và n thì A chia hết cho 2
Ta có:
\(\left(5m+n-4\right)+\left(9m-11n+1\right)=10m-10n-3=2\left(5m-5n\right)-3\) luôn là số lẻ với mọi m;n nguyên
\(\Rightarrow5m+n-4\) và \(9m-11n+1\) luôn khác tính chẵn lẻ với mọi m; n nguyên
\(\Rightarrow\) Trong 2 số luôn có 1 số lẻ và 1 số chẵn
\(\Rightarrow\) Tích của 2 số luôn là 1 số chẵn
\(\Rightarrow\) Tích của 2 số luôn chia hết cho 2 với mọi m;n nguyên
`A = (x+7)/(x+3) `
Điều kiện: `x ne -3`
Do `x in Z => x+7 in Z` và `x+3 in Z`
Để A là số nguyên `<=> x+7 vdots x+3`
`<=> x + 3 + 4 vdots x+3`
`<=> 4 vdots x+3`
`<=> x + 3 in Ư(4) = {-4;-2;-1;1;2;4}`
`<=> x in {-7;-5;-4;-2;-1;1}` (Thỏa mãn)
Vậy ....
x + 7 = x + 3 + 4
Để A là số nguyên thì 4 ⋮ (x + 3)
⇒ x + 3 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}
⇒ x ∈ {-7; -5; -4; -2; -1; 1}
"BSĐ: tìm nghiệm nguyên"
`x+2y+xy=5`
`=>x+y(x+2)=5`
`=>(x+2)+y(x+2)=5+2`
`=>(x+2)(y+1)=7`
Ta có bảng:
Vậy: ..
nếu (x=1):[1+2y+1/cdot y=5] [1+2y+y=5] [1+3y=5] [3y=4] [y=\frac{4}{3}]
Vậy là (x=1) và (y=\frac{4}{3})
bạn xem có đúng ko nhé