K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2024

"BSĐ: tìm nghiệm nguyên"

`x+2y+xy=5`

`=>x+y(x+2)=5`

`=>(x+2)+y(x+2)=5+2`

`=>(x+2)(y+1)=7`

Ta có bảng: 

x + 2                  1               7             -1              -7       
y + 1      7      1     -7     -1
x     -1      5    -3     -9
     6     0     -8     -2

Vậy: .. 

27 tháng 8 2024

nếu (x=1):[1+2y+1/cdot y=5] [1+2y+y=5] [1+3y=5] [3y=4] [y=\frac{4}{3}]

Vậy là (x=1) và (y=\frac{4}{3})

bạn xem có đúng ko nhé

NV
27 tháng 8 2024

\(2a-b=\dfrac{2}{3}\left(a+b\right)\)

\(3\left(2a-b\right)=2\left(a+b\right)\)

\(6a-3b=2a+2b\)

\(4a=5b\)

\(a=\dfrac{5}{4}b\)

Thay vào A ta được:

\(A=\dfrac{\left(\dfrac{5}{4}b\right)^4+5^4}{b^4+4^4}=\dfrac{\dfrac{5^4}{4^4}\left(b^4+4^4\right)}{b^4+4}=\dfrac{5^4}{4^4}\)

NV
26 tháng 8 2024

\(\dfrac{x+8}{28}+\dfrac{x+10}{27}=\dfrac{x+12}{26}+\dfrac{x+14}{25}\)

\(\left(\dfrac{x+8}{28}+2\right)+\left(\dfrac{x+10}{27}+2\right)=\left(\dfrac{x+12}{26}+2\right)+\left(\dfrac{x+14}{25}+2\right)\)

\(\dfrac{x+64}{28}+\dfrac{x+64}{27}=\dfrac{x+64}{26}+\dfrac{x+64}{25}\)

\(\dfrac{x+64}{28}+\dfrac{x+64}{27}-\dfrac{x+64}{26}-\dfrac{x+64}{25}=0\)

\(\left(x+64\right)\left(\dfrac{1}{28}+\dfrac{1}{27}-\dfrac{1}{26}-\dfrac{1}{25}\right)=0\)

\(x+64=0\) (do \(\dfrac{1}{28}+\dfrac{1}{27}-\dfrac{1}{26}-\dfrac{1}{25}\ne0\))

\(x=-64\)

NV
26 tháng 8 2024

\(10M=\dfrac{10.\left(10^{100}+1\right)}{10^{101}+1}=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)

\(10N=\dfrac{10.\left(10^{101}+1\right)}{10^{102}+1}=\dfrac{10^{102}+10}{10^{102}+1}=\dfrac{10^{102}+1+9}{10^{102}+1}=1+\dfrac{9}{10^{102}+1}\)

Do \(10^{101}< 10^{102}\Rightarrow10^{101}+1< 10^{102}+1\)

\(\Rightarrow\dfrac{9}{10^{101}+1}>\dfrac{9}{10^{102}+1}\)

\(\Rightarrow1+\dfrac{9}{10^{101}+1}>1+\dfrac{9}{10^{102}+1}\)

\(\Rightarrow10M>10N\)

\(\Rightarrow M>N\)

NV
27 tháng 8 2024

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)

\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)

\(3\left(x+y\right)=xy\)

\(xy-3x-3y=0\)

\(xy-3x-3y+9=9\)

\(x\left(y-3\right)-3\left(y-3\right)=9\)

\(\left(x-3\right)\left(y-3\right)=9\)

Ta có bảng sau:

x-3-9-3-1139
y-3-1-3-9931
x-60 (loại)24612
y20 (loại)-61264

Vậy \(\left(x;y\right)=\left(-6;2\right);\left(2;-6\right);\left(4;12\right);\left(6;6\right);\left(12;4\right)\)

26 tháng 8 2024

Thêm điều kiện: `x;y in Z`

Do `x;y in Z`

`=> x-1 in Z và y+1 in Z`

Mà `(x-1)(y+1)=3`

`=> x - 1 in Ư(3) = {-3;-1;1;3}`

`=> x in {-2;0;2;4} `

Khi đó: `y + 1 in {-1;-3;3;1}`

`=> y in {-2;-4;2;0}` (Thỏa mãn)

Vậy `(x;y) in {(-2;-2);(0;-4);(2;2);(4;0)}`

26 tháng 8 2024

Đáp án D bạn nhé

NV
26 tháng 8 2024

Em ghi thế này thì cả C lẫn D đều sai

Đáp án C chắc là \(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\) mà em ghi nhầm

22 tháng 8 2024

a) Căn bậc 2 số học của `121` là `11`

Căn bậc 2 của `121` là ` +-11`

b) Căn bậc 2 số học của `(-5/6)^2 ` là ` 5/6`

Căn bậc 2 của `(-5/6)^2` là ` +-5/6`

22 tháng 8 2024

`A = (5m + n - 4)(9m - 11n + 1) `

- Xét m và n là số lẻ thì: 

`5m` là số lẻ

`n` là số lẻ

`=> 5m + n` là số chẵn

`=> 5m + n - 4 ` là số chẵn 

`=> A` chia hết 2

- Xét m và n là số chẵn thì: 

`5m` là số chẵn

`n` là số chẵn

`=> 5m + n` là số chẵn

`=> 5m + n - 4 ` là số chẵn 

`=> A` chia hết 2

- Xét m là số lẻ và n là số chẵn thì: 

`9m` là số lẻ

`11n` là số chẵn

`=> 9m - 11n` là số lẻ

`=> 9m - 11n + 1` là số chẵn

`=> A` chia hết cho 2

- Xét m là số chẵn và n là số lẻ thì: 

`9m` là số chẵn

`11n` là số lẻ

`=> 9m - 11n` là số lẻ

`=> 9m - 11n + 1  ` là số chẵn

`=> A` chia hết cho 2

Vậy với mọi số nguyên m và n thì A chia hết cho 2

NV
23 tháng 8 2024

Ta có:

\(\left(5m+n-4\right)+\left(9m-11n+1\right)=10m-10n-3=2\left(5m-5n\right)-3\) luôn là số lẻ với mọi m;n nguyên

\(\Rightarrow5m+n-4\) và \(9m-11n+1\) luôn khác tính chẵn lẻ với mọi m; n nguyên

\(\Rightarrow\) Trong 2 số luôn có 1 số lẻ và 1 số chẵn

\(\Rightarrow\) Tích của 2 số luôn là 1 số chẵn 

\(\Rightarrow\) Tích của 2 số luôn chia hết cho 2 với mọi m;n nguyên

21 tháng 8 2024

`A = (x+7)/(x+3) `

Điều kiện: `x ne -3`

Do `x in Z => x+7 in Z` và `x+3 in Z`

Để A là số nguyên `<=> x+7 vdots x+3`

`<=> x + 3 + 4 vdots x+3`

`<=> 4 vdots x+3`

`<=> x + 3 in Ư(4) = {-4;-2;-1;1;2;4}`

`<=> x in {-7;-5;-4;-2;-1;1}` (Thỏa mãn)

Vậy ....

21 tháng 8 2024

x + 7 = x + 3 + 4

Để A là số nguyên thì 4 ⋮ (x + 3)

⇒ x + 3 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}

⇒ x ∈ {-7; -5; -4; -2; -1; 1}