Cho hình thang ABCD (AB//CD)có AC=BC. Qua B kẻ đường thẳng// AC cắt đường thẳng DC tại E. CMR: a) tam giác BDE là tam giác cân. b) tam giác ACD=BDC.c) hình tah ng ABCD là hình thang cân
AI GIÚP MÌNH VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-3\right)^2-\left(x+5\right)\left(4x-1\right)=-9\)
\(\Leftrightarrow4x^2-12x+9-4x^2+x-20x+5=-9\)
\(\Leftrightarrow-31x+14=-9\)
\(\Leftrightarrow-31x=-23\)
\(\Leftrightarrow x=\dfrac{-23}{-31}\)
\(\Leftrightarrow x=\dfrac{23}{31}\)
\(\Leftrightarrow4x^2-12x+9-4x^2+x-20x-5=-9\)
\(\Leftrightarrow31x=13\Leftrightarrow x=\dfrac{13}{31}\)
Lời giải:
$=\sqrt{4^2}.\sqrt{5^2}+\sqrt{14^2}: \sqrt{7^2}$
$=4.5+14:7=20+2=22$
Xét Δ ADM và Δ BNC ta có :
Góc A = Góc B = 90o (ABCD là HCN)
AD=BC (ABCD là HCN)
AM=BN (đề bài)
⇒ Δ ADM và Δ BNC (cạnh, góc, cạnh)
⇒ Góc ADM = Góc BCN
mà Góc ADM + Góc MDC =90o
Góc BCN + Góc NCD =90o
⇒ Góc MDC = Góc NCD
mà MN song song CD (AB song song CD)
⇒ MNCD là hình thang cân
a) Gọi \(\widehat{ADB}=\widehat{D_1;}\widehat{CDB}=\widehat{D_2}\)
Xét Δ vuông BDC ta có :
\(\)\(\widehat{D_2}+\widehat{C}=90^o\)
mà \(\widehat{D_2}=\dfrac{\widehat{D}}{2}\) (DB là phân giác \(\widehat{ADC}\))
\(\widehat{C}=\widehat{D}\) (ABCD là hình thang cân)
\(\Rightarrow\dfrac{\widehat{D}}{2}+\widehat{D}=90^o\)
\(\Rightarrow\dfrac{\widehat{3D}}{2}=90^o\Rightarrow\widehat{D}=60^o\Rightarrow\widehat{C}=\widehat{D}=60^o\)
Ta lại có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
mà \(\left\{{}\begin{matrix}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{matrix}\right.\) (ABCD là hình thang cân)
\(\Rightarrow2\widehat{A}+2\widehat{C}=360^o\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2\widehat{C}}{2}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2.60^o}{2}=120^o\)
b) \(BC=AD=6\left(cm\right)\) (ABCD là hình thang cân)
Xét Δ vuông BDC ta có :
\(Cos60^o=\dfrac{BC}{DC}=\dfrac{1}{2}\)
\(\Rightarrow DC=2BC=2.6=12\left(cm\right)\)
\(DC^2=BD^2+BC^2\left(Pitago\right)\)
\(\Rightarrow BD^2=DC^2-BC^2=12^2-6^2=144-36=108=3.36\)
\(\Rightarrow BD=6\sqrt[]{3}\left(cm\right)\)
Kẻ đường cao AH và BE vuông góc DC tại H và E
Ta có : \(BE.CD=BD.BC\Rightarrow BE=\dfrac{CD}{BD.BC}=\dfrac{12}{6.6\sqrt[]{3}}=\dfrac{1}{3\sqrt[]{3}}\left(cm\right)\)
Xét Δ BEC ta có :
\(BC^2=BE^2+EC^2\Rightarrow EC^2=BC^2-BE^2=36-\dfrac{1}{27}\)
\(\Rightarrow EC^2=\dfrac{971}{27}\Rightarrow EC=\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)
ABHE là hình chữ nhật (AB \(//\) HE;AH \(//\) BE vì cùng vuông với CD; Góc H=90o )
\(\Rightarrow AB=HE=CD-2EC=12-\dfrac{2}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\) (tính chất hình thang cân)
Chu vi hình thang cân ABCD :
\(2BC+DC+AB=2.6+12+12-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}=36-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)
Từ (1) và (2)
\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx=0\)
1) \(...=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x=9.\left(-15\right)=-135\left(x=-15\right)\)
a)Xét ΔACB và ΔEBC,có:
góc ACB=góc EBC(so le trong,AC//BE)
BC chung
góc ABC=góc ECB(so le trong,AB//CE)
⇒ΔACB=ΔEBC(g-c-g)
⇒AC=EB(hai cạnh tương ứng)
Mà AC=BD(gt)
⇒BE=BD
⇒ΔBDE cân tại B
b)Ta có:ΔBDE cân tại B(cmt)
⇒góc BED=góc BDE(2 góc ở đáy)
Mà góc BED=góc ACD(2 góc đồng vị,AC//BE)
⇒góc BDC=góc ACD
Xét ΔACD và ΔBDC,có:
AC=BD(gt)
góc ACD=góc BDC(cmt)
CD chung
⇒ΔACD=ΔBDC(c-g-c)
⇒góc ADC=góc BCD(hai góc tương ứng)
c)Xét hình thang ABCD(AB//CD),có:
góc ADC=góc BCD(cmt)
⇒ABCD là hthang cân
a)Xét ΔACB và ΔEBC,có:
góc ACB=góc EBC(so le trong,AC//BE)
BC chung
góc ABC=góc ECB(so le trong,AB//CE)
⇒ΔACB=ΔEBC(g-c-g)
⇒AC=EB(hai cạnh tương ứng)
Mà AC=BD(gt)
⇒BE=BD
⇒ΔBDE cân tại B
b)Ta có:ΔBDE cân tại B(cmt)
⇒góc BED=góc BDE(2 góc ở đáy)
Mà góc BED=góc ACD(2 góc đồng vị,AC//BE)
⇒góc BDC=góc ACD
Xét ΔACD và ΔBDC,có:
AC=BD(gt)
góc ACD=góc BDC(cmt)
CD chung
⇒ΔACD=ΔBDC(c-g-c)
⇒góc ADC=góc BCD(hai góc tương ứng)
c)Xét hình thang ABCD(AB//CD),có:
góc ADC=góc BCD(cmt)
⇒ABCD là hình thang cân