I=4x-1-|x-7| khi x\(\ge\)7
H=5x+2-|x+5| khi x < -5
giúp em với ạ, em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là x (km) (x > 0)
Thời gian đi từ A đến B là \(\frac{x}{30}\left(h\right)\)(1)
Thời gian đi từ B về A là \(\frac{x}{24}\left(h\right)\)(2)
Tổng thời gian đi không nghỉ là : 5 giờ 15 phút - 45 phút = 4 giờ 30 phút = 4,5 giờ (3)
Từ (1)(2)(3) ta có phương trình
\(\frac{x}{30}+\frac{x}{24}=4,5\)
<=> \(x\left(\frac{1}{30}+\frac{1}{24}\right)=4,5\)
<=> \(x.\frac{3}{40}=4,5\)
<=> x = 60 (tm)
Vậy quãng đường AB dài 60 km
A B C D M I H K O
a/ Xét tg vuông AMB và tg vuông IMA có
\(\widehat{MAI}=\widehat{ABM}\) (cùng phụ với \(\widehat{AMB}\) )
=> tg AMB đồng dạng với tg IMA (g.g.g)
b/
Trong hình vuông hai đường chéo vuông góc với nhau
Xét tg vuông OBC và tg vuông CBD có
\(\widehat{DBC}\) chung => tg OBC đồng dạng với tg CBD \(\Rightarrow\frac{OC}{DC}=\frac{BC}{BD}\Rightarrow OC.BD=BC.DC\left(dpcm\right)\)
c/ Kéo dài AH cắt CD tại N
Xét tg vuông ABM và tg vuông DAN có
\(\widehat{DAN}=\widehat{ABM}\) (cùng phụ với \(\widehat{AMB}\) )
AB=AD (cạnh hình vuông)
\(\Rightarrow\Delta ABM=\Delta DAN\) (Tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> AM=DN mà \(AM=\frac{AD}{2}\) Và AD=CD \(\Rightarrow DN=\frac{AD}{2}=\frac{CD}{2}\Rightarrow DN=CN\)
Xét tg ADC có
OA=OC (trong tg vuông hai đường chéo cắt nhau tại trung điểm mỗi đường) => DO là trung tuyến của tg ADC
DN=CN (cmt) => AN là trung tuyến của tg ADC
=> H là trọng tâm của tg ADC \(\Rightarrow\frac{HO}{DO}=\frac{1}{3}\Rightarrow\frac{HO}{DH}=\frac{1}{2}\Rightarrow\frac{HO}{1}=\frac{DH}{2}=\frac{HO+DH}{1+2}=\frac{OD}{3}\)
Mà OD=OB \(\Rightarrow\frac{DH}{2}=\frac{HO}{1}=\frac{OB}{3}=\frac{HO+OB}{1+3}=\frac{BH}{4}\Rightarrow DH=\frac{BH}{2}\Rightarrow BH=2.DH\left(dpcm\right)\)
thể tích hình hộp chữ nhật là : 10 x 18 x 20 = \(3600cm^3\)
a) Vì tứ giác ABCD là hình thang vuông
=> AB song song CD
=> góc ABD = góc BDC
Xét tam giác ABD và tam giác BDC có:
góc BAD = góc CBD (=90*)
Góc ABD = Góc BDC ( cmt)
=> tam giác ABD đồng dạng tam giác BDC (g.g)
b) Vì tam giác ABD vuông tại A nên theo ĐL Py-ta-go ta có:
BD2 = AB2 + AD2
=> BD2 = 42 + 32
=> BD2 = 25
=> BD = 5 (cm)
Vì tam giác ABD đồng dạng tam giác BDC ( cm ý a)
=> AB/BD = BD/DC ( 2 cặp cạnh tương ứng)
=> 4/5 = 5/DC
=> DC = 6,25
c) Kẻ \(AH\perp BD\).
Dẽ thấy: \(\frac{S_{ADE}}{S_{ABD}}=\frac{\frac{AH.DE}{2}}{\frac{AH.BD}{2}}=\frac{DE}{BD}\).
Vì \(AB//CD\)( do hình thang ABCD vuông tại A và D).
Và E là giao điểm của AC và BD.
\(\Rightarrow\frac{DE}{BE}=\frac{CD}{AB}\)(hệ quả của dịnh lí Ta-lét).
\(\Rightarrow\frac{DE}{BE}=\frac{6,25}{4}=\frac{25}{16}\)(thay số).
\(\Rightarrow\frac{DE}{BE+DE}=\frac{25}{16+25}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{DE}{BD}=\frac{25}{41}\).
Do đó \(\frac{S_{ADE}}{S_{ABD}}=\frac{25}{41}\).
\(\Rightarrow S_{ADE}=\frac{25.S_{ABD}}{41}=\frac{25.\frac{AB.AD}{2}}{41}=\frac{25.\frac{4.3}{2}}{41}\).
\(\Rightarrow S_{ADE}=\frac{25.6}{41}=\frac{150}{41}\left(cm^2\right)\).
vậy \(S_{ADE}=\frac{150}{41}cm^2\).
I= 4x-1-(x-7) =3x+6
H=5x+2-(x+5)=4x-3
bạn ơi bạn làm rõ các bước ở câu I được ko ạ?