Mọi người ơi, sao tháng trước mình được hạng nhất mà qua tháng rồi mà mình vẫn chưa được tặng xu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(A=3x^3+6x^2-3x-x^3+\dfrac{1}{2}\)
\(=2x^3+6x^2-3x+\dfrac{1}{2}\)
Thay x=2 vào A, ta được:
\(A=2\cdot2^3+6\cdot2^2-3\cdot2+\dfrac{1}{2}=16+24-6+\dfrac{1}{2}=34,5\)
Thay x=1/3 vào A, ta được:
\(A=2\cdot\left(\dfrac{1}{3}\right)^3+6\cdot\left(\dfrac{1}{3}\right)^2-3\cdot\dfrac{1}{3}+\dfrac{1}{2}\)
\(=\dfrac{2}{27}+\dfrac{6}{9}-1+\dfrac{1}{2}\)
\(=\dfrac{20}{27}-\dfrac{1}{2}=\dfrac{40-27}{54}=\dfrac{13}{54}\)

\(F=4x-6y+7=2\left(2x-3y\right)+7=2\cdot7+7=21\)
\(a-b=-7\)
=>a=b-7
\(E=\dfrac{3a-2b}{2a+7b}=\dfrac{3\left(b-7\right)-2b}{2\left(b-7\right)+7b}\)
\(=\dfrac{3b-21-2b}{2b-14+7b}=\dfrac{b-21}{9b-14}\)
\(K=7x-7y+4ax-4ay-5\)
\(=7\left(x-y\right)+4a\left(x-y\right)-5\)
\(=7\cdot0+4a\cdot0-5=-5\)

Lời giải:
$F(x)=x^3+x^2+(2a+3)x-3a=x^2(x-2)+3x(x-2)+(2a+9)x-3a$
$=x^2(x-2)+3x(x-2)+(2a+9)(x-2)+2(2a+9)-3a$
$=(x-2)(x^2+3x+2a+9)+(a+18)$
$\Rightarrow F(x)$ chia $x-2$ dư $a+18$
Để số dư là $14$
$\Rightarrow a+18=14$
$\Rightarrow a=-4$

Câu 1:
a: A(x)+B(x)
\(=x^3-4x^2+7x-5+4x^3-5x^3+9\)
\(=-4x^2+7x+4\)
b: A(x)-B(x)
\(=x^3-4x^2+7x-5-\left(-x^3+9\right)\)
\(=x^3-4x^2+7x-5+x^3-9\)
\(=2x^3-4x^2+7x-14\)
c: M(x)+A(x)=B(x)
=>M(x)=B(x)-A(x)
=>M(x)=-(A(x)-B(x))
\(=-2x^3+4x^2-7x+14\)
d: \(B\left(-1\right)=4\cdot\left(-1\right)^3-5\cdot\left(-1\right)^3+9\)
\(=-4+5+9=10\ne0\)
=>x=-1 không là nghiệm của B(x)


a: Ta có: ΔABC vuông tại A
=>BC là cạnh lớn nhất trong ΔABC
=>BC>AB
b: Xét ΔMBC và ΔMDE có
\(\widehat{MCB}=\widehat{MDE}\)(hai góc so le trong, BC//DE)
MC=MD
\(\widehat{CMB}=\widehat{DME}\)(hai góc đối đỉnh)
Do đó: ΔMBC=ΔMDE
=>DE=BC
Xét ΔEDB có ED+DB>EB
mà ED=BC
nên BC+DB>EB
Bạn cứ đợi đi tại dạo này mình cũng thấy cập nhật top bxh hơi bất thường á
Kiểu như là nó lâu hơn bình thường.