Bài 1. (2 điểm) Tìm điều kiện của biến số $x$ để hàm số sau có nghĩa.
a.$y=f\left(x \right)=\dfrac{2}{\left| x \right|-2}$;
b. $y=f\left(x \right)=\dfrac{1}{2-x}+\dfrac{1}{x+3}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=2\left(x^2+4xy+4y^2\right)+3y^2-4x-2y+6\)
\(=2\left(x+2y\right)^2-4\left(x+2y\right)+2+3y^2+6y+3+1\)
\(=2\left(x+2y-1\right)^2+3\left(y+1\right)^2+1\ge1\)
\(E_{min}=1\) khi \(\left\{{}\begin{matrix}x+2y-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a) Áp dụng tính chất đường phân giác trong tam giác ABM, ta có:
\(\dfrac{DA}{DB}=\dfrac{MA}{MB}\)
Tương tự, ta có \(\dfrac{EA}{EC}=\dfrac{MA}{MC}\)
Nhưng vì AM là trung tuyến của tam giác ABC \(\Rightarrow MB=MC\) nên ta có \(\dfrac{DA}{DB}=\dfrac{EA}{EC}\) . Áp dụng định lý Thales đảo \(\Rightarrow\) DE//BC (đpcm)
b) Áp dụng định lý Thales cho tam giác ABM, ta có:
\(\dfrac{AI}{AM}=\dfrac{DI}{BM}\)
Tương tự, ta có \(\dfrac{AI}{AM}=\dfrac{EI}{CM}\)
Do đó: \(\dfrac{DI}{BM}=\dfrac{EI}{CM}\)
Mà \(BM=CM\Rightarrow EI=DI\) \(\Rightarrow\) I là trung điểm DE (đpcm)
ca) Hàm số đi qua điểm M(1;3) ta thay x = 1 và y = 3 ta có:
\(3=a\cdot1+2\Leftrightarrow a+2=3\Leftrightarrow a=3-2\Leftrightarrow a=1\)
b) Hàm số cắt Ox tại: \(\left(-2;0\right)\)
Oy tại: \(\left(0;2\right)\)
c) Gọi giao điểm của hàm số với trục Ox là A, với trục Oy là B
Ta có: \(OA=OB=2\Rightarrow\Delta OAB\) cân tại O
\(\Rightarrow\widehat{BAO}=\dfrac{180^o-90^o}{2}=45^o\)
f(4) = 3.√4 + 5 = 3.2 + 5 = 11
f(1/9) = 3.√(1/9) + 5 = 3.1/3 + 5 = 6
f(4) = 3.\(\sqrt{4}+5\) = 11
f(\(\dfrac{1}{9}\)) = 3.\(\sqrt{\dfrac{1}{9}}+5\) = 6
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔKNM~ΔMNP
Xét ΔKNM vuông tại K và ΔKMP vuông tại K có
\(\widehat{KNM}=\widehat{KMP}\left(=90^0-\widehat{KMN}\right)\)
Do đó; ΔKNM~ΔKMP
b: Ta có: ΔKNM~ΔKMP
=>\(\dfrac{KN}{KM}=\dfrac{KM}{KP}\)
=>\(KM^2=KN\cdot KP\)
c: Xét ΔMNP vuông tại M có MK là đường cao
nên \(MK^2=KN\cdot KP\)
=>\(MK^2=4\cdot9=36=6^2\)
=>\(MK=\sqrt{6^2}=6\left(cm\right)\)
PN=PK+NK
=4+9=13(cm)
Xét ΔMNP có MK là đường cao
nên \(S_{MNP}=\dfrac{1}{2}\cdot MK\cdot NP=\dfrac{1}{2}\cdot6\cdot13=3\cdot13=39\left(cm^2\right)\)
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
�^
N chung
Do đó: ΔKNM~ΔMNP
Xét ΔKNM vuông tại K và ΔKMP vuông tại K có
��^=���^(=900−���^)KNM=KMP(=90−KMN)
Do đó; ΔKNM~ΔKMP
KN/KM = KM/KP
b: Ta có ΔKNM~ΔKMP
=>��2=��⋅��KM2 = KN.KP
c: Xét ΔMNP vuông tại M có MK là đường cao
nên ��2=��⋅��MK2=KN2.KP2
MK2 = 42 + 92
MK2= 36
MK =6
\(a,A=\dfrac{x^2-2x+1}{x^2-1}\\ =\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x-1}{x+1}\)
`b,` Khi `x=3` thì :
\(\dfrac{x-1}{x+1}=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
Khi `x=-3/2` thì :
\(\dfrac{-\dfrac{3}{2}-1}{-\dfrac{3}{2}+1}\\ =\dfrac{-\dfrac{3}{2}-\dfrac{2}{2}}{-\dfrac{3}{2}+\dfrac{2}{2}}\\ =\dfrac{-\dfrac{5}{2}}{-\dfrac{1}{2}}\\ =-\dfrac{5}{2}\cdot\left(-2\right)=\dfrac{10}{2}=5\)
`c,` Để `A` nhận giá trị nguyên ta có :
\(\dfrac{x-1}{x+1}=\dfrac{x+1-2}{x+1}=\dfrac{x+1}{x+1}-\dfrac{2}{x+1}\)
Vậy \(x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
`-> x+1=1=>x=0`
`->x+1=-1=>x=-2`
`->x+1=2=>x=1`
`->x+1=-2=>x=-3`
a) 7x + 2 = 0
7x = 0 - 2
7x = -2
x = -2/7
Vậy S = {-2/7}
b) 18 - 5x = 7 + 3x
3x + 5x = 18 - 7
8x = 11
x = 11/8
Vậy S = {11/8}
a) Trong 6 mặt của xúc xắc có 2 mặt là hợp số là 4 và 6
Xác xuất xảy ra biến cố đó là:
\(P=\dfrac{2}{6}=\dfrac{1}{3}\)
b) Trong 6 mặt của xúc xắc có 2 mặt của xúc xắc chia 3 dư 2 là: 2 và 5
Xác xuất xảy ra biến cố đó là:
\(P=\dfrac{2}{6}=\dfrac{1}{3}\)
a: Để \(f\left(x\right)=\dfrac{2}{\left|x\right|-2}\) có nghĩa thì \(\left|x\right|-2\ne0\)
=>\(\left|x\right|\ne2\)
=>\(x\in R\backslash\left\{2;-2\right\}\)
b: Để \(f\left(x\right)=\dfrac{1}{2-x}+\dfrac{1}{x+3}\) có nghĩa thì \(\left\{{}\begin{matrix}2-x\ne0\\x+3\ne0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-3\end{matrix}\right.\)