tam giác abc vuông tại A có cạnh AC ngắn hơn cạnh BC là 9cm. Tính độ dài ba cạnh của tam giác abc biết chu vi của tam giác bằng 70cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Vì sao trong trường hợp cả 2024 câu đã là đúng thì chính chúng lại là những câu sai ạ? Nếu vậy thì nó vô lý rồi ạ, vì một mệnh đề không thể vừa đúng vừa sai được.
Ta loại câu số 2024 vì nếu đây là khẳng định đúng thì số khẳng định sai nhiều nhất chỉ là 2023, không thể có tới 2024 khẳng định sai.
Xét câu 1: nếu có ít nhất 1 câu khẳng định sai thì khẳng định sai là câu 2024. Vậy thì câu 2 sẽ đúng, tuy nhiên câu thứ 2 mâu thuẫn với câu 1, vậy câu 1 sai.
Xét câu \(n\left(1< n< 2023\right)\), nếu có ít nhất n câu khẳng định sai thì khẳng định sai là câu \(1,...,n-1,2024\), Vậy thì câu \(n+1\) sẽ đúng, tuy nhiên câu thứ \(n+1\) mâu thuẫn với câu n, vậy câu n sai.
Sau khi loại từ câu 1 tới 2022 và câu 2024. Ta thấy có 2023 khẳng định sai, vậy câu 2023 đúng.

Giả sử có hữu hạn số nguyên tố là \(p_1,p_2,...,p_n\) với \(n\ge1\)
Gọi \(p_i\left(1\le i\le n\right)\) là số nguyên tố lớn nhất trong n số nguyên tố trên. Xét số \(P=p_1p_2...p_n+1\), rõ ràng \(P>p_i\) . Hơn nữa \(P\) không chia chết cho bất kì số nguyên tố \(p_j\left(1\le j\le n\right)\) nào nên \(P\) cũng là một số nguyên tố.
Như vậy, ta tìm được một số nguyên tố mới lớn hơn \(p_i\) là số nguyên tố lớn nhất. Điều này là vô lí.
Vậy điều giả sử là sai \(\Rightarrow\) Có vô hạn số nguyên tố.

Ta có lợi nhuận được tính theo CT: \(y=-86x^2+86000x-1814600\)
Để biết được doanh nghiệp lỗ khi bán tối đa hay tối thiểu bao nhiêu sản phẩm thì ta cần xét dấu tam thức bậc 2:
\(\Delta=b^2-4ac=86000^2-4\cdot-86\cdot-18146000=1153776000>0\)
Tam thức đã cho có 2 nghiệm:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-86000+\sqrt{115377600}}{2\cdot-86}=500-10\sqrt{390}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-86000-\sqrt{1153776000}}{2\cdot-86}=500+10\sqrt{390}\)
Khi đó:
\(y< 0\) với mọi x thuộc khoảng \(\left(-\infty;500-10\sqrt{390}\right)\) và \(\left(500+10\sqrt{390};+\infty\right)\)
\(y>0\) với mọi x thuộc khoảng \(\left(500-10\sqrt{390};500+10\sqrt{390}\right)\)
Vậy doanh nghiệp sẽ bị lỗ khi bán ít hơn 302 sản phẩm hoặc nhiều hơn 698 sản phẩm


Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt đã cho trở thành \(t^2-2mt-\left(2m-3\right)=0\) (*)
a) Để pt có 4 nghiệm thì (*) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-\left[-\left(2m-3\right)\right]>0\\2m>0\\3-2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+3\right)>0\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow1< m< \dfrac{3}{2}\)
Vậy \(1< m< \dfrac{3}{2}\)
b) Để pt vô nghiệm thì pt (*) vô nghiệm hoặc có 2 nghiệm âm phân biệt.
TH1: (*) vô nghiệm \(\Leftrightarrow\Delta'< 0\) \(\Leftrightarrow-3< m< 1\)
TH2: (*) có 2 nghiệm âm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S< 0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\\m< 0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow m< -3\)
Vậy \(m< -1\) và \(m\ne-3\)

cứ mỗi đỉnh của đa giác thì sẽ tạo ra được 1 tam giác có 2 cạnh là 2 cạnh của đa giác. Mà đa giác có 10 đỉnh nên ta sẽ 10 tam giác thoả yêu câu
Đặt \(BC=x\left(cm\right)\) (ĐK: \(x>9\))
\(\Rightarrow AC=BC-9=x-9\left(cm\right)\)
Theo định lý Py-ta-go ta có:
\(BC^2=AC^2+AB^2\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{x^2-\left(x-9\right)^2}=\sqrt{x^2-\left(x^2-18x+81\right)}\)
\(\Rightarrow AB=\sqrt{18x-81}\)
Theo đề bài: \(C_{ABC}=70\left(cm\right)\)
\(\Rightarrow AB+AC+BC=70\)
\(\Rightarrow\sqrt{18x-81}+\left(x-9\right)+x=70\)
\(\Rightarrow\sqrt{18x-81}=79-2x\left(x\le\dfrac{79}{2}\right)\)
\(\Rightarrow18x-81=\left(79-2x\right)^2\)
\(\Rightarrow18x-81=6241-316x+4x^2\)
\(\Rightarrow4x^2-334x+6322=0\)
\(\Delta=\left(-334\right)^2-4\cdot4\cdot6322=10404>0\)
\(x_1=\dfrac{334+\sqrt{10404}}{2\cdot4}=\dfrac{109}{2}>\dfrac{79}{2}\left(ktm\right)\)
\(x_2=\dfrac{334-\sqrt{10404}}{2\cdot4}=29\left(tm\right)\)
\(\Rightarrow BC=29\left(cm\right)\)
\(AC=29-9=20\left(cm\right)\)
\(AB=\sqrt{18\cdot29-81}=21\left(cm\right)\)
Vậy: ...