Cho tam giác ABC cân tại A, trên tia đối của AB lấy D,kẻ đg thể quá D song song với AB,cắt đg thẳng AC tại E
a,cm AE bằng AD
b,chứng minh tứ giác DEBC là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a/
DE//BC (gt) nên
\(\widehat{ADE}=\widehat{ABC}\) (Góc so le trong)
\(\widehat{AED}=\widehat{ACB}\) (Góc so le trong)
\(\widehat{ABC}=\widehat{ACB}\) (Góc ở đáy tg cân)
\(\Rightarrow\widehat{ADE}=\widehat{AED}\) => tg AED cân tại A => AE=AD
b/
DE//BC (gt) => DEBC là hình thang
Xét tg ABE và tg ADC có
AE=AD (cmt); AB=AC (cạnh bên tg cân)
\(\widehat{BAE}=\widehat{CAD}\) (Góc đối đỉnh)
=> tg ABE = tg ACD (c.g.c) => BE=CD
=> DEBC là hình thang cân
\(\dfrac{5x^6y^7+4x^5y^6+3x^4y^5}{-x^3y^2}\)
\(=\dfrac{-5x^6y^7}{x^3y^2}-\dfrac{4x^5y^6}{x^3y^2}-\dfrac{3x^4y^5}{x^3y^2}\)
\(=-5x^3y^5-4x^2y^4-3xy^3\)
\(\dfrac{8x^4y^3+24x^3y^2-2x^2y^2}{4x^2y^2}\)
\(=\dfrac{8x^4y^3}{4x^2y^2}+\dfrac{24x^3y^2}{4x^2y^2}-\dfrac{2x^2y^2}{4x^2y^2}\)
\(=2x^2y+6x-\dfrac{1}{2}\)
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(DP=PC=\dfrac{DC}{2}\)
mà AB=DC
nên AM=MB=DP=PC
Xét tứ giác MBCP có
MB//CP
MB=CP
Do đó: MBCP là hình bình hành
Hình bình hành MBCP có \(\widehat{MBC}=90^0\)
nên MBCP là hình chữ nhật
b: Gọi O là trung điểm của BH
Xét ΔHAB có
N,O lần lượt là trung điểm của HA,HB
=>NO là đường trung bình của ΔHAB
=>NO//AB và NO=1/2AB
Ta có: NO//AB
AB\(\perp\)BC
=>NO\(\perp\)BC
Xét ΔBNC có
NO,BH là các đường cao
NO cắt BH tại O
Do đó: O là trực tâm của ΔBNC
=>CO\(\perp\)BN
Ta có: \(NO=\dfrac{1}{2}AB\)
AB=CD
\(CP=\dfrac{CD}{2}\)
Do đó: NO=CP
Xét tứ giác NOCP có
NO//CP
NO=CP
Do đó: NOCP là hình bình hành
=>NP//OC
mà OC\(\perp\)BN
nên BN\(\perp\)NP
c: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>KB//AD
mà BC//AD
và KB,BC có điểm chung là B
nên K,B,C thẳng hàng
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Hình bình hành ADME có \(\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Sửa đề: ACMN là hình bình hành
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MD//AB
Do đó: D là trung điểm của AC
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
=>AMBN là hình bình hành
Hình bình hành AMBN có MN\(\perp\)AB
nên AMBN là hình thoi
=>AN//BM và AN=BM
Ta có: AN//BM
M thuộc BC
Do đó: AN//MC
Ta có: AN=BM
BM=MC
Do đó: AN=MC
Xét tứ giác ACMN có
AN//CM
AN=CM
Do đó: ACMN là hình bình hành
c: D là trung điểm của AC
=>\(AD=DC=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
E là trung điểm của AB
=>\(AE=EB=\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
ADME là hình chữ nhật
=>\(S_{ADME}=AD\cdot AE=3\cdot4=12\left(cm^2\right)\)
ACMN là hình bình hành
=>MN=AC
=>MN=8(cm)
AMBN là hình thoi
=>\(S_{AMBN}=\dfrac{1}{2}\cdot AB\cdot MN=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
d: Để AMBN là hình thoi thì \(\widehat{AMB}=90^0\)
=>AM\(\perp\)BC
Xét ΔABC có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔABC cân tại A
=>AB=AC
Mình cần giúp mong các bạn giúp mình :((( mình đang vội
M = 3\(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028
M = 2\(x^2\) + \(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028
M = (2\(x^2\) - 8\(x\) + 8) + (\(x^2\) + 2\(xy\) + y2) + 2020
M = 2.(\(x^2\) - 4\(x\) + 4) + (\(x+y\))2 + 2020
M = 2.(\(x-2\))2 + (\(x+y\))2 + 2020
Vì (\(x-2\))2 ≥ 0 ∀ \(x\); 2.(\(x-2\))2 ≥ 0; (\(x+y\))2 \(\ge\) 0 \(\forall\) \(x;y\)
⇒ 2.(\(x-2\))2 + (\(x+y\))2 + 2020 ≥ 2020
Vậy Mmin = 2020 khi \(\left\{{}\begin{matrix}x-2=0\\x+y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=2\\y=-x\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
Vậy giái trị nhỏ nhất của biểu thức M là 2020 xảy ra khi (\(x;y\))=(2; -2)
\(M=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4+\left(2x^2-4x+2\right)+2022\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+2\left(x-1\right)+2022\)
\(=\left(x+y-2\right)^2+2\left(x-1\right)^2+2022\)
Do \(\left\{{}\begin{matrix}\left(x+y-2\right)^2\ge0\\2\left(x-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow M\ge2022\)
Vậy \(M_{min}=2022\) khi \(\left\{{}\begin{matrix}x+y-2=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow x=y=1\)
a: Ta có: ED//BC
=>\(\widehat{ADE}=\widehat{ABC}\)(hai góc so le trong) và \(\widehat{AED}=\widehat{ACB}\)(hai góc so le trong)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ADE}=\widehat{AED}\)
=>AE=AD
b: Ta có: AD+AB=BD
AE+AC=CE
mà AD=AE và AB=AC
nên BD=CE
Xét tứ giác BCDE có
BC//DE
BD=CE
Do đó: BCDE là hình thang cân