a. Hợp chất có chứa 1,59% H, 22,22% N, còn lại là Oxygen (về khối lượng). Khối lượng phân tử của hợp chất là 63 amu.
b. Hợp chất FexO3 có khối lượng phân tử của hợp chất là 160 amu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuỳ theo mức độ thấp như thế nào, nhưng nếu em cố gắng em có khả năng nâng 1 bậc học lực cả năm, thậm chí 2 bậc
Giả sử x;y;z đều chẵn
\(\Rightarrow x=2a;y=2b;z=2c\Rightarrow xyz=8abc⋮4\)
Nếu x;y;z đều lẻ => (x-y); (y-z); (z-x) chẵn
\(\Rightarrow\left(x-y\right)=2a;\left(y-z\right)=2b;\left(z-x\right)=2c\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=8abc⋮4\)
Nếu trong 3 số x;y;z có ít nhất 1 số lẻ giả sử x lẻ
=> xyz chẵn và \(xyz=2a\)
=> (y-z) chẵn và \(y-z=2b\)
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)=\)
\(=2a.\left(x-y\right).2b.\left(z-x\right)=4ab\left(x-y\right)\left(z-x\right)⋮4\)
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮4\forall x;y;z\)
Nếu 1 trong 3 số x; y; z chia hết cho 3
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)
Nếu không có số nào chia hết cho 3 ta có một số khi chia cho 3 dư 1 hoặc 2 => trong 3 số có 2 số đồng dư
=> 1 trong 3 số (x-y); (y-z); (z-x) có 1 số chia hết cho 3
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\forall x;y;z\)
Mà 3 và 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3.4=12\forall x;y;z\)
a) A nguyên khi (12n + 17) ⋮ (3n + 1)
Ta có:
12n + 17 = 12n + 4 + 13
= 4(3n + 1) + 13
Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)
⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ 3n ∈ {-14; -2, 0; 12}
⇒ n ∈ {-14/3; -2/3; 0; 4}
Mà n là số nguyên
⇒ n ∈ {0; 4}
b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)
Ta có:
10n + 9 = 10n - 2 + 11
= 2(5n - 1) + 11
Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)
⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ 5n ∈ {-10; 0; 2; 12}
⇒ n ∈ {-2; 0; 2/5; 12/5}
Mà n là số nguyên
⇒ n ∈ {-2; 0}
a,Kéo dài OY cắt O'X' tại A ta có:
\(\widehat{XOY}\) = \(\widehat{XOA}\) = \(\widehat{OAO'}\) (so le trong) (1)
\(\widehat{Y'O'X'}\) = \(\widehat{Y'O'A}\) = \(\widehat{OAO'}\) (so le trong) (2)
Kết hợp (1) Và (2) ta có:
\(\widehat{XOY=}\) \(\widehat{X'O'Y'}\) (đpcm)
b, Kéo dài OY cắt O'Z' tại H
\(\widehat{ZOA}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\) (vì OZ là phân giác của góc XOY
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{X'O'Y'}\) (vì OY là phân giác của góc X'O'Y')
Mặt khác ta có \(\widehat{OAO'}\) = \(\widehat{HO'A}\) + \(\widehat{AHO'}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) ⇒ \(\widehat{AHO'}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\)
⇒ \(\widehat{ZOA}\) = \(\widehat{AHO'}\) (hai góc này ở vị trí so le trong)
⇒ OZ // O'Z' (đpcm)
a) Xét ∆ABD và ∆EBD có:
AB = BE (gt)
∠ABD = ∠EBD (BD là tia phân giác của ABC)
BD là cạnh chung
⇒ ∆ABD = ∆EBD (c-g-c)
b) Do ∆ABD = ∆EBD (cmt)
⇒ AD = ED (hai cạnh tương ứng)
Lại do ∆ABD = ∆EBD (cmt)
⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)
⇒ ∠DAF = ∠DEC = 90⁰
Xét hai tam giác vuông: ∆DAF và ∆DEC có:
AD = ED (cmt)
∠ADF = ∠EDC (đối đỉnh)
⇒ ∆DAF = ∆DEC (cạnh góc vuông - góc nhọn kề)
⇒ AF = EC (hai cạnh tương ứng)
c) ∆BAE có:
AB = BE (gt)
⇒ ∆BAE cân tại B
⇒ ∠BEA = ∠BAE = (180⁰ - ∠ABC) : 2 (1)
Do AF = EC (cmt)
AB = BE (gt)
⇒ AF + AB = EC + BE
⇒ BF = BC
⇒ ∆BFC cân tại B
⇒ ∠BCF = ∠BFC = (180⁰ - ∠ABC) : 2 (2)
Từ (1) và (2) suy ra:
∠BEA = ∠BCF
Mà ∠BEA và ∠BCF là hai góc đồng vị
⇒ AE // CF
a, Ta có:
\(m_H=1,59\%.63=1\left(amu\right)\\ m_N=22,22\%.63=14\left(amu\right)\\ m_O=63-\left(1+14\right)=48\left(amu\right)\)
Đặt CTTQ:
\(H_aN_bO_c\left(a,b,c:nguyên,dương\right)\\ a=\dfrac{1}{1}=1;b=\dfrac{14}{14}=1;c=\dfrac{48}{16}=3\\ \Rightarrow CTHH:HNO_3\)
Câu b)
\(m_O=16.3=48\left(amu\right)\\ m_{Fe}=160-48=112\left(amu\right)\\ Mặt.khác:m_{Fe}=56x\left(amu\right)\\ Nên:56x=112\\ \Leftrightarrow x=2\\ Vậy.CTHH:Fe_2O_3\)