Cho đường tròn (O,R) và một đường thẳng (d) không cắt đường tròn O. Dựng đường thẳng OH vuông góc với d tại H. Trên đường thẳng (d) lấy điểm K khác điểm H. Vẽ hai tiếp tuyến KA và KB với đường tròn sao cho A, H nằm về hai phía của đường thẳng OK. a) Chứng minh năm diểm A, B, O, K, H cùng nằm trên một đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại I. Chứng minh rằng IA.IB =IH.IO c) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi điểm K chạy trên đường thẳng (d) cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
\(A=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}+\frac{\sqrt{x}+3}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{4\sqrt{x}-6}{(\sqrt{x}-3)(\sqrt{x}+3)}\\ =\frac{\sqrt{x}(\sqrt{x}-3)+\sqrt{x}+3-(4\sqrt{x}-6)}{(\sqrt{x}-3)(\sqrt{x}+3)}\\ =\frac{x-6\sqrt{x}+9}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{(\sqrt{x}-3)^2}{(\sqrt{x}-3)(\sqrt{x}+3)}\\ =\frac{\sqrt{x}-3}{\sqrt{x}+3}\)


\(A=\dfrac{2021x+2022\sqrt{1-x^2}+2023}{\sqrt{1-x^2}}\)
\(A=2022+\dfrac{2021x+2023}{\sqrt{1-x^2}}\)
Xét \(\dfrac{2021x+2023}{\sqrt{1-x^2}}\)
\(\dfrac{2021x+2023}{\sqrt{1-x^2}}\ge2\sqrt{2022}\)
\(\Rightarrow A\ge2022+2\sqrt{2022}\)
\(A\ge2\left(1011+\sqrt{2022}\right)\)
Dấu "=" xảy ra khi \(x=-\dfrac{2021}{2023}\)

\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\left(1\right)\\4x^2y+6x=y^2\left(2\right)\end{matrix}\right.\)
pt (2) \(\Leftrightarrow4x^2y^2+6xy=y^3\) (3)
Thế (3) vào (1), ta được \(8x^3y^3+27=18\left(4x^2y^2+6xy\right)\)
\(\Leftrightarrow8\left(xy\right)^3-72\left(xy\right)^2-108xy+27=0\) (4)
Đặt \(xy=t\) thì (4) thành
\(8t^3-72t^2-108t+27=0\)
\(\Leftrightarrow8t^3+12t^2-84t^2-126t+18t+27=0\)
\(\Leftrightarrow4t^2\left(2t+3\right)-42t\left(2t+3\right)+9\left(2t+3\right)=0\)
\(\Leftrightarrow\left(2t+3\right)\left(4t^2-42t+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{3}{2}\\t=\dfrac{21\pm9\sqrt{5}}{4}\end{matrix}\right.\)
Xét \(t=-\dfrac{3}{2}\) \(\Rightarrow xy=-\dfrac{3}{2}\) . Thay vào (2), ta có:
\(y^3=4\left(xy\right)^2+6xy\) \(=4\left(-\dfrac{3}{2}\right)^2+6\left(-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow y=0\) \(\Leftrightarrow x=0\)
Nếu \(t=\dfrac{21+9\sqrt{5}}{4}\) thì \(xy=\dfrac{21+9\sqrt{5}}{4}\). Thay vào (2), ta có:
\(y^3=4\left(\dfrac{21+9\sqrt{5}}{4}\right)^2+6\left(\dfrac{21+9\sqrt{5}}{4}\right)\) \(\Rightarrow y=...\Rightarrow x=...\)
Xét tương tự với \(t=\dfrac{21-9\sqrt{5}}{4}\)
Vậy ...
Với lại bạn cần loại nghiệm \(x=y=0\) nhé vì nó không thỏa mãn pt (1).

Gọi H là giao điểm của FM và OA.
Tính được \(AM=\dfrac{b+c-a}{2}\)
Tính được \(cos\widehat{BAC}=\dfrac{b^2+c^2-a^2}{2bc}\) rồi dùng
\(MF=\sqrt{AM^2+AF^2-2AM.AF.cos\widehat{BAC}}\)
\(=\sqrt{2AM^2\left(1-cos\widehat{BAC}\right)}\)
\(=MA\sqrt{2\left(1-\dfrac{b^2+c^2-a^2}{2bc}\right)}\)
\(=MA\sqrt{\dfrac{a^2-\left(b-c\right)^2}{bc}}\)
\(=\dfrac{b+c-a}{2}\sqrt{\dfrac{a^2-\left(b-c\right)^2}{bc}}\)
\(\Rightarrow\dfrac{MF}{MA}=\sqrt{\dfrac{a^2-\left(b-c\right)^2}{bc}}=J\)
\(\Rightarrow cos\widehat{MEF}=cos\widehat{MAH}=\dfrac{MH}{MA}=\dfrac{J}{2}\)
\(\Rightarrow sin\widehat{MEF}=\sqrt{1-cos^2\widehat{MAH}}\)
\(=\sqrt{1-\dfrac{J^2}{4}}\)
\(=\sqrt{1-\dfrac{a^2-b^2-c^2+2bc}{4bc}}\)
\(=\sqrt{\dfrac{\left(b+c\right)^2-a^2}{4bc}}\) \(=A\)
Ta cũng tính được \(ME=\dfrac{c+a-b}{2}\sqrt{\dfrac{b^2-\left(c-a\right)^2}{ca}}=\dfrac{c+a-b}{2}\sqrt{\dfrac{\left(b+c-a\right)\left(a+b-c\right)}{ca}}\)
\(EF=\dfrac{a+b-c}{2}\sqrt{\dfrac{c^2-\left(a-b\right)^2}{ab}}=\dfrac{a+b-c}{2}\sqrt{\dfrac{\left(c+a-b\right)\left(b+c-a\right)}{ab}}\)
\(\Rightarrow S_{MEF}=\dfrac{1}{2}EM.EF.sin\widehat{MEF}\) \(=...\)

Điểm F ở câu a) với điểm N ở câu b) là những điểm gì thế bạn? Mình thấy trong đề không có định nghĩa các điểm này.
a) Nhận thấy \(\widehat{OBK}=\widehat{OAK}=90^o\) \(\Rightarrow\) Tứ giác OAKB nội tiếp đường tròn (OK).
Mặt khác \(\widehat{OHK}=90^o\) nên \(H\in\left(OK\right)\)
\(\Rightarrow\) 5 điểm A, B, O, K, H cùng thuộc đường tròn (OK).
b) Từ câu a) \(\Rightarrow\) Tứ giác OAHB nội tiếp
\(\Rightarrow\widehat{IHB}=\widehat{IAO}\)
Từ đó dễ dàng chứng minh \(\Delta IHB~\Delta IAO\left(g.g\right)\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{IB}{IO}\) \(\Rightarrow IA.IB=IH.IO\) (đpcm)
c) Gọi T là giao điểm của OK và AB.
Tính chất của 2 tiếp tuyến cắt nhau \(\Rightarrow OK\perp AB\) tại T
Tam giác OAK vuông tại A có đường cao AT nên \(OT.OK=OA^2\) (hệ thức lượng trong tam giác vuông)
Xét tam giác OTI và OHK, ta có:
\(\widehat{HOK}\) chung , \(\widehat{OTI}=\widehat{OHK}=90^o\)
\(\Rightarrow\Delta OTI~\Delta OHK\left(g.g\right)\)
\(\Rightarrow\dfrac{OT}{OH}=\dfrac{OI}{OK}\)
\(\Rightarrow OT.OK=OH.OI\)
Mà \(OT.OK=OA^2\) (cmt) \(\Rightarrow OH.OI=OA^2\)
\(\Rightarrow OI=\dfrac{OA^2}{OH}\) là một hằng số
\(\Rightarrow\) I thuộc đường tròn \(\left(O;\dfrac{OA^2}{OH}\right)\) cố định
Hơn nữa I nằm trên đường thẳng OH cố định nên I cố định
\(\Rightarrow\) AB đi qua I cố định.
khó thế con Phương kia