một hình chữ nhật có chiều dài hơn chiều rông 7m và diện tích bằng 120. TÍnh chiều dài và chiều rộng của hinh chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Ta có: ΔOBD cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOD
Xét ΔOBA và ΔODA có
OB=OD
\(\widehat{BOA}=\widehat{DOA}\)
OA chung
Do đó: ΔOBA=ΔODA
=>\(\widehat{OBA}=\widehat{ODA}\)
=>\(\widehat{ODA}=90^0\)
=>AD là tiếp tuyến của (O)
Xét (O) có
ΔBDE nội tiếp
BE là đường kính
Do đó: ΔBDE vuông tại D
=>BD\(\perp\)DE
mà BD\(\perp\)OA
nên OA//DE
b: Xét (O) có
ΔBFE nội tiếp
BE là đường kính
Do đó: ΔBFE vuông tại F
=>BF\(\perp\)AE tại F
Xét ΔBEA vuông tại B có BF là đường cao
nên \(AF\cdot AE=AB^2\left(1\right)\)
Xét ΔABO vuông tại B có BC là đường cao
nên \(AC\cdot AO=AB^2\left(2\right)\)
Từ (1),(2) suy ra \(AF\cdot AE=AC\cdot AO\)

a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
Xét tứ giác OHBI có \(\widehat{OHB}=\widehat{OIB}=\widehat{HBI}=90^0\)
nên OHBI là hình chữ nhật
b: ΔOBD cân tại O
mà OI là đường cao
nên OI là phân giác của góc BOD
Xét ΔODK và ΔOBK có
OD=OB
\(\widehat{DOK}=\widehat{BOK}\)
OK chung
Do đó: ΔODK=ΔOBK
=>\(\widehat{ODK}=\widehat{OBK}\)
=>\(\widehat{ODK}=90^0\)
=>KD là tiếp tuyến của (O)
c: Xét ΔOBM vuông tại B có BH là đường cao
nên \(OH\cdot OM=OB^2\)
=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)
ΔOHB vuông tại H
=>\(OH^2+BH^2=OB^2\)
=>\(BH=\sqrt{R^2-\left(\dfrac{R}{2}\right)^2}=\dfrac{R\sqrt{3}}{2}\)
mà BH=OI
nên \(OI=\dfrac{R\sqrt{3}}{2}\)
ΔOBD cân tại O
mà OI là đường cao
nên I là trung điểm của BD
Ta có: OH=BI
mà BI=ID(I là trung điểm của BD)
nên OH=DI
=>DI=R/2
Xét ΔODK vuông tại D có DI là đường cao
nên \(\dfrac{1}{DI^2}=\dfrac{1}{DO^2}+\dfrac{1}{DK^2}\)
=>\(\dfrac{1}{DK^2}=\dfrac{1}{\left(\dfrac{R}{2}\right)^2}-\dfrac{1}{R^2}=\dfrac{1}{\dfrac{R^2}{4}}-\dfrac{1}{R^2}=\dfrac{3}{R^2}\)
=>\(DK=\dfrac{R\sqrt{3}}{3}\)
ΔADK vuông tại D
=>\(DA^2+DK^2=AK^2\)
=>\(AK=\sqrt{\left(\dfrac{R\sqrt{3}}{3}\right)^2+\left(2R\right)^2}=\dfrac{R\sqrt{39}}{3}\)
Chu vi tam giác ADK là:
AD+DK+AK
\(=2R+\dfrac{R\sqrt{3}}{3}+\dfrac{R\sqrt{39}}{3}=R\left(2+\dfrac{\sqrt{3}+\sqrt{39}}{3}\right)\)

Gọi giá niêm yết của một cái bàn là là x(nghìn đồng)
(Điều kiện: x>0)
Giá niêm yết của một cái quạt điện là 850-x(nghìn đồng)
Giá tiền thực tế của cái bàn là là: \(x\left(1-10\%\right)=0,9x\left(nghìnđồng\right)\)
Giá tiền thực tế của cái quạt điện là:
\(\left(850-x\right)\left(1-20\%\right)=0,8\left(850-x\right)=680-0,8x\left(nghìnđồng\right)\)
Tổng số tiền phải trả là:
850-125=725(nghìn đồng)
=>0,9x+680-0,8x=725
=>0,1x=725-680=45
=>x=450(nhận)
Vậy: Số tiền thực tế anh Bình phải trả cho cái bàn là là: \(450\cdot0,9=405\) nghìn đồng
Số tiền thực tế anh Bình phải trả cho cái quạt điện là:
\(680-0,8\cdot450=320\left(nghìnđồng\right)\)

Xét \(\Delta ABO':\)
\(AB\ge O'A-O'B\left(1\right)\)
Xét \(\Delta OAO':\)
\(O'A\ge O'O-OA\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow AB\ge O'O-OA-O'B=950-500-300=150\left(m\right)\)
Dấu '=' xảy ra khi \(4\) điểm \(O;A;B;O'\) thẳng hàng
\(\Rightarrow\) Xây cầu có chiều dài là \(150\left(m\right)\) trên đoạn nối 2 tâm cầu 2 hòn đảo (O'O) thì cây cầu sẽ ngắn nhất.

Diện tích đáy bể là: \(2x^2\) `(m^2)`
Chiều cao bể là: \(\dfrac{72}{2x^2}=\dfrac{36}{x^2}\left(m^2\right)\)
Diện tích xung quanh bể là: \(\left(2x+x\right).2.\dfrac{36}{x^2}=\dfrac{216}{x}\left(m^2\right)\)
Diện tích cần xây là:
\(2x^2+\dfrac{216}{x}=2\left(x^2+\dfrac{54}{x}+\dfrac{54}{x}\right)\ge2.3\sqrt[3]{x^2.\dfrac{54}{x}.\dfrac{54}{x}}=54\sqrt[3]{4}\left(m^2\right)\)
Dấu "=" xảy ra khi \(x^2=\dfrac{54}{x}\Rightarrow x=\sqrt[3]{54}=3,78\left(m\right)\)

a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
b: ΔODE cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)DE tại I
Xét ΔFOA có
AI,OB là các đường cao
AI cắt OB tại G
Do đó: G là trực tâm của ΔFOA
=>FG\(\perp\)OA
c: Gọi H là trung điểm của FA
ΔFIA vuông tại I
mà IH là đường trung tuyến
nên IH=HA=HF
=>H là tâm đường tròn ngoại tiếp ΔFIA
ΔOIG vuông tại I
mà IQ là đường trung tuyến
nên QI=QG
=>ΔQIG cân tại Q
\(\widehat{HIQ}=\widehat{HIG}+\widehat{QIG}=\widehat{HAI}+\widehat{QGI}\)
mà \(\widehat{QGI}=\widehat{BGA}\)(hai góc đối đỉnh)
nên \(\widehat{HIQ}=\widehat{BGA}+\widehat{BAG}=90^0\)
=>HI\(\perp\)IQ
=>IQ là tiếp tuyến của đường tròn ngoại tiếp ΔFIA

2\(x^2\) + 5\(x\) + 3 = 0
a - b + c = 2 - 5 + 3 = 0
Vậy pt có hai nghiệm phân biệt là:
\(x_1\) = -1; \(x_2\) = - \(\dfrac{c}{a}\) = \(\dfrac{-3}{2}\)
Vậy S= {- \(\dfrac{3}{2}\); -1}
Ta có: \(2x^2+5x+3=0\)
=>\(2x^2+2x+3x+3=0\)
=>2x(x+1)+3(x+1)=0
=>(x+1)(2x+3)=0
=>\(\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

a:
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x+2\)
=>\(x^2=-2x+8\)
=>\(x^2+2x-8=0\)
=>(x+4)(x-2)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Khi x=-4 thì \(y=-\dfrac{1}{2}\cdot\left(-4\right)+2=2+2=4\)
Khi x=2 thì \(y=-\dfrac{1}{2}\cdot2+2=-1+2=1\)
Vậy: Tọa độ giao điểm của (P) và (d) là A(-4;4); B(2;1)
Gọi chiều rộng hình chữ nhật là x(m)
(Điều kiện: x>0)
Chiều dài hình chữ nhật là x+7(m)
Diện tích là 120m2 nên ta có: x(x+7)=120
=>\(x^2+7x=120\)
=>\(x^2+7x-120=0\)
=>(x+15)(x-8)=0
=>\(\left[{}\begin{matrix}x+15=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-15\left(loại\right)\\x=8\left(nhận\right)\end{matrix}\right.\)
Vậy: Chiều rộng là 8m
Chiều dài là 8+7=15m
Ta gọi chiều rộng là x, chiều dài là x+7.
Ta có phương trình: x(x + 7) = 120
Ta giải phương trình:
Ta kết luận:
Vậy chiều dài là 15 m và chiều rộng là 8 m.