\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)-\(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)+\(\dfrac{2\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\) (x>0, x khác 1)
a) Rút gọn P
b) Tìm x để \(\dfrac{P}{2012\sqrt{x}}\) đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=3x-2k\left(d_1\right)\)
\(y=\left(-2m+1\right)x+2k-4\left(d_2\right)\)
\(d_1\equiv d_2\Leftrightarrow\) \(\left\{{}\begin{matrix}-2m+1=3\\-2k=2k-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m=-2\\4k=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\k=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}m=-1\\k=1\end{matrix}\right.\) thỏa đề bài
Bài 1 :
b) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-6y=4\\-4x+6y=0\end{matrix}\right.\)
\(\Rightarrow0x+0y=4\) (vô lý)
\(\Rightarrow\) HPT vô nghiệm
Bài 2 :
\(\left\{{}\begin{matrix}2x-ay=b\\ax+by=1\end{matrix}\right.\)
Khi \(x=1;y=2\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}2.1-a.2=b\\a.1+b.2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\a+2b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+2b=4\\a+2b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a=3\\2b=1-a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\) thỏa mãn đề bài
Bạn tự vẽ đồ thị nhé.
ĐKXĐ : \(x\ge5\)
Ta có \(x-3\sqrt{x}+4=2\sqrt{x-5}\)
\(\Leftrightarrow x-3\sqrt{x}=2\left(\sqrt{x-5}-2\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=2.\dfrac{x-9}{\sqrt{x-5}+2}\)
\(\Leftrightarrow\sqrt{x}.\left(\sqrt{x}-3\right)=\dfrac{2\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}{\sqrt{x-5}+2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}=\dfrac{2.\left(\sqrt{x}+3\right)}{\sqrt{x-5}+2}\end{matrix}\right.\)
Với \(\sqrt{x}-3=0\Leftrightarrow x=9\left(tm\right)\)
Với \(\sqrt{x}=\dfrac{2.\left(\sqrt{x}+3\right)}{\sqrt{x-5}+2}\Leftrightarrow\sqrt{x}.\sqrt{x-5}=6\)
\(\Leftrightarrow x^2-5x-36=0\Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=-4\left(\text{loại}\right)\end{matrix}\right.\)
Tập nghiệm \(S=\left\{9\right\}\)
\(2\cdot\sqrt{\left(3-\sqrt{5}\right)}\cdot\sqrt{3+\sqrt{5}}\\ =2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\\ =2\cdot\sqrt{9-5}\\ =2\cdot\sqrt{4}\\ =2\cdot2\\ =4\)
Khoảng cách từ 1 điểm đến 1 đường thẳng cho trước có độ dài ngắn nhất là khoảng cách từ điểm đã cho đến chân đường vuông góc của đường thẳng đi qua điểm đã cho với đường thẳng cho trước
Gọi đường thẳng đi qua M và vuông góc với y là g=ax+b
=> \(2.a=-1\Rightarrow a=-\dfrac{1}{2}\)
\(\Rightarrow g=a.x+b\Leftrightarrow2=-\dfrac{1}{2}.4+b\Rightarrow b=4\)
=> đồ thị hàm số đi qua M vuông góc với y là \(g=-\dfrac{1}{2}x+4\)
Để 2 đồ thị trên cắt nhau
\(\Rightarrow2x+3=-\dfrac{1}{2}x+4\Rightarrow x=\dfrac{2}{5}\) Thay \(x=\dfrac{2}{5}\) vào y=2x+3
\(\Rightarrow y=2.\dfrac{2}{5}+3=\dfrac{19}{5}\)
\(\Rightarrow A\left(\dfrac{2}{5};\dfrac{19}{5}\right)\)
Lời giải:
a. Để hai đường thẳng cắt nhau thì:
$m\neq 2m+1$
$\Leftrightarrow m\neq 1$
b. Để hai đường thẳng song song với nhau thì:
$2m+1=m$
$\Leftrightarrow m=1$
a) \(P=\dfrac{x^2-\sqrt[]{x}}{x+\sqrt[]{x}+1}-\dfrac{2x+\sqrt[]{x}}{\sqrt[]{x}}+\dfrac{2\left(x+\sqrt[]{x}-2\right)}{\sqrt[]{x}-1}\)
Điều kiện xác định \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left[\left(\sqrt[]{x}\right)^3-1\right]}{x+\sqrt[]{x}+1}-\dfrac{\sqrt[]{x}\left(2\sqrt[]{x}+1\right)}{\sqrt[]{x}}+\dfrac{2\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+2\right)}{\sqrt[]{x}-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-1\right)\left(x+\sqrt[]{x}+1\right)}{x+\sqrt[]{x}+1}-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)
\(\Rightarrow P=\sqrt[]{x}\left(\sqrt[]{x}-1\right)-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)
\(\Rightarrow P=x-\sqrt[]{x}-2\sqrt[]{x}-1+2\sqrt[]{x}+4\)
\(\Rightarrow P=x-\sqrt[]{x}+3\)
b) \(A=\dfrac{P}{2012\sqrt[]{x}}=\dfrac{x-\sqrt[]{x}+3}{2012\sqrt[]{x}}\)\(\)
\(=\dfrac{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+3}{2012\sqrt[]{x}}\)
\(=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}{2012\sqrt[]{x}}\)
\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{\dfrac{11}{4}}{2012\sqrt[]{x}}=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\)
Ta lại có \(\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}\ge0,\forall x\ne0\)
\(\dfrac{1}{\sqrt[]{x}}>0\Rightarrow\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{4.2012}=\dfrac{11}{8048}\)
\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{8048}\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt[]{x}=1\Leftrightarrow x=1\)
Vậy \(GTNN\left(A\right)=\dfrac{11}{8048}\left(tạix=1\right)\)