Cho tam giác ABC cân tạo A, kẻ phân giác AD của góc BAC (D thuộc BC). Trên đoạn thẳng AD lấy điểm K bất kì (K khác A và D)
a) Hai △AKB và △AHC có bằng nhau không?Vì sao?
b) △KBC là tam giác gì?Vì sao?
C) Chứng minh AD vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x+y\right)-y^2\left(x+y\right)+2\left(x^2+y^2\right)+2\left(x+y\right)\)
\(=-2x^2+2y^2+2x^2+2y^2+2\left(x+y\right)\)
\(=4y^2+2\cdot\left(-2\right)=4y^2-4\)
\(M=4x^4+7x^2y^2+3y^4+5y^2\)
\(=4x^4+4x^2y^2+3x^2y^2+3y^4+5y^2\)
\(=4x^2\left(x^2+y^2\right)+3y^2\left(x^2+y^2\right)+5y^2\)
\(=4x^2\cdot5+3y^2\cdot5+5y^2\)
\(=20x^2+20y^2=20\cdot5=100\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB=\sqrt{15^2-9^2}=12\left(cm\right)\)
\(BC=2\cdot BH=2\cdot12=24\left(cm\right)\)
c: Xét ΔABC có
H là trung điểm của BC
HM//AB
Do đó: M là trung điểm của AC
Xét ΔABC có
CI,AH là các đường trung tuyến
CI cắt AH tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm
M là trung điểm của AC
Do đó: B,G,M thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB(ΔAHB=ΔAKC)
Do đó: ΔKBC=ΔHCB
=>\(\widehat{KCB}=\widehat{HBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔACB có
BH,CK là các đường cao
BH cắt CK tại I
Do đó: I là trực tâm của ΔACB
=>AI\(\perp\)BC tại M
TA có: ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
c: Sửa đề: Chứng minh HK//BC
Xét ΔABC có
\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)
nên KH//BC
a: Xét ΔBAE vuông tạiA và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: EA=EH
=>E nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BE là đường trung trực của AH
c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)
\(\widehat{HAD}+\widehat{BHA}=90^0\)(ΔADH vuông tại D)
mà \(\widehat{BAH}=\widehat{BHA}\)(ΔBAH cân tại B)
nên \(\widehat{CAH}=\widehat{DAH}\)
=>AH là phân giác của góc DAC
Bài 2:
a: P(x)+Q(x)
\(=-3x^3-2x^2-6x+4-3x^3-x^2+4x-3\)
\(=-6x^3-3x^2-2x+1\)
b: 2P(x)-3Q(x)
\(=2\left(-3x^3-2x^2-6x+4\right)-3\left(-3x^3-x^2+4x-3\right)\)
\(=-6x^3-4x^2-12x+8+9x^3+3x^2-12x+9\)
\(=3x^3-x^2-24x+17\)
Bài 1:
\(A=3x^2y-4xy+5xy^2-6+3xy-3x^2y-1\)
\(=\left(3x^2y-3x^2y\right)+\left(-4xy+3xy\right)+5xy^2-7\)
\(=5xy^2-xy-7\)
Khi x=1 và y=-1 thì \(A=5\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-7\)
=5+1-7
=-1
\(\left(3-x\right)^{2022}>=0\forall x\)
=>\(\left(3-x\right)^{2022}+2022>=2022\forall x\)
=>\(\dfrac{20}{\left(3-x\right)^{2022}+2022}< =\dfrac{20}{2022}=\dfrac{10}{1011}\forall x\)
Dấu '=' xảy ra khi 3-x=0
=>x=3
a: Xét ΔADB và ΔADC có
AD chung
\(\widehat{BAD}=\widehat{CAD}\)
AB=AC
Do đó: ΔADB=ΔADC
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
b: ΔABD=ΔACD
=>DB=DC
=>D là trung điểm của BC
Xét ΔABC có
BM,AD là các đường trung tuyến
BM cắt AD tại G
Do đó: G là trọng tâm của ΔABC
=>BG=2GN
AG\(\perp\)BC
CN\(\perp\)CB
Do đó: AG//CN
Xét ΔMAG và ΔMCN có
\(\widehat{MAG}=\widehat{MCN}\)(AG//CN)
MA=MC
\(\widehat{AMG}=\widehat{CMN}\)(hai góc đối đỉnh)
Do đó: ΔMAG=ΔMCN
=>GM=NM
=>M là trung điểm của GN
=>GN=2GM
=>BG=GN
c: Xét ΔGBC có
GD là đường cao
GD là đường trung tuyến
Do đó: ΔGBC cân tại G
=>GB=GC
mà GB=GN
nên GC=GN
=>ΔGCN cân tại G
a) Diện tích xung quanh bể bơi:
\(\left(15+6\right).2.3,5=147\left(m^2\right)\)
Diện tích đáy bể:
\(15.6=90\left(m^2\right)\)
Diện tích cần lát gạch:
\(147+90=237\left(m^2\right)\)
b) Diện tích viên gạch:
\(40.50=2000\left(cm^2\right)=0,2\left(m^2\right)\)
Số viên gạch cần dùng để lát:
\(237:0,2=1185\) (viên)
c) Thể tích nước khi đầy bể:
\(15.6.3,5=315\left(m^3\right)\)
a: Sửa đề: ΔAKB và ΔAKC
Xét ΔAKB và ΔAKC có
AK chung
\(\widehat{KAB}=\widehat{KAC}\)
AB=AC
Do đó: ΔAKB=ΔAKC
b: ΔAKB=ΔAKC
=>KB=KC
=>ΔKBC cân tại K
c: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD\(\perp\)BC