công thức tính mấy bài kiểu vầy là sao v mn:
1+1/2+1/3...+1/2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tổng là A
⇒ A = \(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+\dfrac{1}{208}+...+\dfrac{1}{3190}\)
⇒ 3A = \(3\left(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+\dfrac{1}{208}+...+\dfrac{1}{3190}\right)\)
⇒ 3A = \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+...+\dfrac{3}{55.58}\)
⇒ 3A = \(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+...+\dfrac{1}{55}-\dfrac{1}{58}\)
⇒ 3A = \(\dfrac{1}{4}-\dfrac{1}{58}\) = \(\dfrac{29}{116}-\dfrac{2}{116}\) = \(\dfrac{27}{116}\)
⇒ A = \(\dfrac{27}{116}\): 3 = \(\dfrac{27}{116}\).\(\dfrac{1}{3}\) = \(\dfrac{9}{116}\)
\(\dfrac{3}{2}+\dfrac{3}{14}.\dfrac{7}{9}-0,75\)
\(=\dfrac{3}{2}+\dfrac{1}{6}-0,75\)
\(=\dfrac{5}{3}-0,75\)
= \(\dfrac{11}{12}\)
Lời giải:
\(A=\frac{5^2.2^{14}.3^{10}(2^5.3+1)}{2^{17}.3^{11}.5^3(3.5-2)}\)
\(=\frac{5^2.2^{14}.3^{10}.97}{2^{17}.3^{11}.5^3.13}=\frac{97}{5.2^3.3.13}=\frac{97}{1560}\)
A = \(\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+...+\dfrac{3^2}{196.199}\)
A = \(\dfrac{3.3}{1.4}+\dfrac{3.3}{4.7}+...+\dfrac{3.3}{196.199}\)
A = \(3.\dfrac{3}{1.4}+3.\dfrac{3}{4.7}+...+3.\dfrac{3}{196.199}\)
A = \(3\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{196.199}\right)\)
A = \(3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{196}-\dfrac{1}{199}\right)\)
A = \(3\left(1-\dfrac{1}{199}\right)\) = \(3.\dfrac{198}{199}\) = \(\dfrac{594}{199}\)
Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$
$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$
$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương
$\Rightarrow x+2023=0$
$\Leftrightarrow x=-2023$
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ..+ \(\dfrac{1}{55}\)+ \(\dfrac{1}{66}\)
A = 2 \(\times\) ( \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) +...+ \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\))
A = 2 \(\times\) ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\) +...+ \(\dfrac{1}{10.11}\)+ \(\dfrac{1}{11.12}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +...+ \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))
A = 1 - \(\dfrac{1}{6}\) < 1
Vậy A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ...+ \(\dfrac{1}{55}\)+ \(\dfrac{1}{66}\) < 1