Tìm x biết :
\(\left(\dfrac{-3}{5}\right)^2-\left(x-\dfrac{1}{3}\right)=\dfrac{4}{25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`x- \left(\frac54-\frac75 \right)=\frac{9}{20}`
`\Rightarrow x-\frac{-3}{20}=\frac{9}{20}`
`\Rightarrow x=\frac{9}{20}+\frac{-3}{20}`
`\Rightarrow x=\frac{3}{10}`
\(x-\left(\dfrac{5}{4}-\dfrac{7}{5}\right)=\dfrac{9}{20}\)
=>\(x-\dfrac{25-28}{20}=\dfrac{9}{20}\)
=>\(x+\dfrac{3}{20}=\dfrac{9}{20}\)
=>\(x=\dfrac{9}{20}-\dfrac{3}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)

a: \(-0,7< \dfrac{-13}{19}< -0,6\)
\(\dfrac{19}{-23}< -0,8\)
mà -0,8<-0,7
nên \(\dfrac{19}{-23}< -\dfrac{13}{19}\)
b: \(\dfrac{1}{83}:\dfrac{6}{331}=\dfrac{1}{83}\cdot\dfrac{331}{6}=\dfrac{331}{498}< 1\)
=>\(\dfrac{1}{83}< \dfrac{6}{331}\)
=>\(\dfrac{1}{83}+1< \dfrac{6}{331}+1\)
=>\(\dfrac{84}{83}< \dfrac{337}{331}\)
=>\(\dfrac{84}{-83}>\dfrac{-337}{331}\)

\(\dfrac{7}{5}-\left(\dfrac{2}{5}-x\right)=-\dfrac{3}{10}\)
=>\(\dfrac{7}{5}-\dfrac{2}{5}+x=-\dfrac{3}{10}\)
=>\(x+1=-\dfrac{3}{10}\)
=>\(x=-\dfrac{3}{10}-1=-\dfrac{13}{10}\)
\(\dfrac{7}{5}\) - (\(\dfrac{2}{5}\) - \(x\)) = \(\dfrac{-3}{10}\)
\(\dfrac{2}{5}\) - \(x\) = \(\dfrac{7}{5}\) - \(\dfrac{-3}{10}\)
\(\dfrac{2}{5}\) - \(x\) = \(\dfrac{14}{10}\) + \(\dfrac{3}{10}\)
\(\dfrac{2}{5}\) - \(x\) = \(\dfrac{17}{10}\)
\(x\) = \(\dfrac{2}{5}\) - \(\dfrac{17}{10}\)
\(x\) = \(\dfrac{4}{10}\) - \(\dfrac{17}{10}\)
\(x\) = \(\dfrac{-13}{10}\)
Vậy \(x=-\dfrac{13}{10}\)

Gọi mẫu số của các phân số cần tìm là x
(Điều kiện: \(x\ne0\))
Theo đề, ta có: \(\dfrac{-3}{5}< \dfrac{9}{x}< \dfrac{-4}{9}\)
=>\(\dfrac{-36}{60}< \dfrac{-36}{-4x}< \dfrac{-36}{81}\)
=>\(\dfrac{36}{60}>\dfrac{36}{-4x}>\dfrac{36}{81}\)
=>60<-4x<81
=>-15>x>-20,25
=>-20,25<x<-15
Vậy: Các phân số cần tìm có dạng là \(\dfrac{9}{x}\), với điều kiện là -20,25<x<-15

Gọi mẫu của các phân số cần tìm là x
Theo đề, ta có: \(-\dfrac{9}{11}< \dfrac{7}{x}< \dfrac{-9}{13}\)
=>\(\dfrac{-63}{77}< \dfrac{-63}{-9x}< \dfrac{-63}{91}\)
=>\(\dfrac{63}{77}>\dfrac{63}{-9x}>\dfrac{63}{91}\)
=>77<-9x<91
=>\(-\dfrac{77}{9}>x>-\dfrac{91}{9}\)
Vậy: Các phân số cần tìm có dạng là \(\dfrac{7}{x}\), với điều kiện là \(-\dfrac{91}{9}< x< -\dfrac{77}{9}\)

\(\left(x+\dfrac{3}{5}\right)-\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow x+\dfrac{3}{5}-\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{1}{2}\\ \Rightarrow x=\dfrac{10}{30}-\dfrac{18}{30}+\dfrac{15}{30}\\ \Rightarrow x=\dfrac{7}{30}\)
\(\left(x+\dfrac{3}{5}\right)-\dfrac{1}{2}=\dfrac{1}{3}\)
=>\(x=\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{3}{5}=\dfrac{5}{6}-\dfrac{3}{5}=\dfrac{25}{30}-\dfrac{18}{30}=\dfrac{7}{30}\)

\(\dfrac{2}{5}+\left(x-\dfrac{2}{3}\right)=\dfrac{5}{3}\)
=>\(x+\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{5}{3}\)
=>\(x=\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{2}{5}=\dfrac{7}{3}-\dfrac{2}{5}=\dfrac{35}{15}-\dfrac{6}{15}=\dfrac{29}{15}\)

`#3107.101107`
\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\\ =\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^8\cdot2^2\cdot5}\\ =\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^{10}\cdot5}\\ =\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\\ =\dfrac{-2}{6}=-\dfrac{1}{3}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^8.3^8.2^2+6^8.20}\\ =\dfrac{2^{10}.3^8-2.6^9}{\left(2.3\right)^8.2^2+6^8.20}=\dfrac{2^8.3^8.2^2-2.6^9}{6^8.4+6^8.20}\\ =\dfrac{6^8.4-2.6.6^8}{6^8.\left(4+20\right)}=\dfrac{6^8.\left(4-2.6\right)}{6^8.24}\\ =\dfrac{4-12}{24}=\dfrac{-8}{24}=-\dfrac{1}{3}\)
\(\left(-\dfrac{3}{5}\right)^2-\left(x-\dfrac{1}{3}\right)=\dfrac{4}{25}\)
=>\(\dfrac{9}{25}-\left(x-\dfrac{1}{3}\right)=\dfrac{4}{25}\)
=>\(x-\dfrac{1}{3}=\dfrac{9}{25}-\dfrac{4}{25}=\dfrac{5}{25}=\dfrac{1}{5}\)
=>\(x=\dfrac{1}{5}+\dfrac{1}{3}=\dfrac{8}{15}\)